1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
use crate::abi::{self, Abi, Align, FieldsShape, Size};
use crate::abi::{HasDataLayout, TyAbiInterface, TyAndLayout};
use crate::spec::{self, HasTargetSpec};
use rustc_span::Symbol;
use std::fmt;
use std::str::FromStr;

mod aarch64;
mod amdgpu;
mod arm;
mod avr;
mod bpf;
mod csky;
mod hexagon;
mod loongarch;
mod m68k;
mod mips;
mod mips64;
mod msp430;
mod nvptx64;
mod powerpc;
mod powerpc64;
mod riscv;
mod s390x;
mod sparc;
mod sparc64;
mod wasm;
mod x86;
mod x86_64;
mod x86_win64;

#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub enum PassMode {
    /// Ignore the argument.
    ///
    /// The argument is either uninhabited or a ZST.
    Ignore,
    /// Pass the argument directly.
    ///
    /// The argument has a layout abi of `Scalar` or `Vector`.
    /// Unfortunately due to past mistakes, in rare cases on wasm, it can also be `Aggregate`.
    /// This is bad since it leaks LLVM implementation details into the ABI.
    /// (Also see <https://github.com/rust-lang/rust/issues/115666>.)
    Direct(ArgAttributes),
    /// Pass a pair's elements directly in two arguments.
    ///
    /// The argument has a layout abi of `ScalarPair`.
    Pair(ArgAttributes, ArgAttributes),
    /// Pass the argument after casting it. See the `CastTarget` docs for details. The bool
    /// indicates if a `Reg::i32()` dummy argument is emitted before the real argument.
    Cast { pad_i32: bool, cast: Box<CastTarget> },
    /// Pass the argument indirectly via a hidden pointer.
    /// The `meta_attrs` value, if any, is for the metadata (vtable or length) of an unsized
    /// argument. (This is the only mode that supports unsized arguments.)
    /// `on_stack` defines that the value should be passed at a fixed stack offset in accordance to
    /// the ABI rather than passed using a pointer. This corresponds to the `byval` LLVM argument
    /// attribute (using the Rust type of this argument). `on_stack` cannot be true for unsized
    /// arguments, i.e., when `meta_attrs` is `Some`.
    Indirect { attrs: ArgAttributes, meta_attrs: Option<ArgAttributes>, on_stack: bool },
}

impl PassMode {
    /// Checks if these two `PassMode` are equal enough to be considered "the same for all
    /// function call ABIs". However, the `Layout` can also impact ABI decisions,
    /// so that needs to be compared as well!
    pub fn eq_abi(&self, other: &Self) -> bool {
        match (self, other) {
            (PassMode::Ignore, PassMode::Ignore) => true,
            (PassMode::Direct(a1), PassMode::Direct(a2)) => a1.eq_abi(a2),
            (PassMode::Pair(a1, b1), PassMode::Pair(a2, b2)) => a1.eq_abi(a2) && b1.eq_abi(b2),
            (
                PassMode::Cast { cast: c1, pad_i32: pad1 },
                PassMode::Cast { cast: c2, pad_i32: pad2 },
            ) => c1.eq_abi(c2) && pad1 == pad2,
            (
                PassMode::Indirect { attrs: a1, meta_attrs: None, on_stack: s1 },
                PassMode::Indirect { attrs: a2, meta_attrs: None, on_stack: s2 },
            ) => a1.eq_abi(a2) && s1 == s2,
            (
                PassMode::Indirect { attrs: a1, meta_attrs: Some(e1), on_stack: s1 },
                PassMode::Indirect { attrs: a2, meta_attrs: Some(e2), on_stack: s2 },
            ) => a1.eq_abi(a2) && e1.eq_abi(e2) && s1 == s2,
            _ => false,
        }
    }
}

// Hack to disable non_upper_case_globals only for the bitflags! and not for the rest
// of this module
pub use attr_impl::ArgAttribute;

#[allow(non_upper_case_globals)]
#[allow(unused)]
mod attr_impl {
    // The subset of llvm::Attribute needed for arguments, packed into a bitfield.
    bitflags::bitflags! {
        #[derive(Default, HashStable_Generic)]
        pub struct ArgAttribute: u8 {
            const NoAlias   = 1 << 1;
            const NoCapture = 1 << 2;
            const NonNull   = 1 << 3;
            const ReadOnly  = 1 << 4;
            const InReg     = 1 << 5;
            const NoUndef = 1 << 6;
        }
    }
}

/// Sometimes an ABI requires small integers to be extended to a full or partial register. This enum
/// defines if this extension should be zero-extension or sign-extension when necessary. When it is
/// not necessary to extend the argument, this enum is ignored.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub enum ArgExtension {
    None,
    Zext,
    Sext,
}

/// A compact representation of LLVM attributes (at least those relevant for this module)
/// that can be manipulated without interacting with LLVM's Attribute machinery.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub struct ArgAttributes {
    pub regular: ArgAttribute,
    pub arg_ext: ArgExtension,
    /// The minimum size of the pointee, guaranteed to be valid for the duration of the whole call
    /// (corresponding to LLVM's dereferenceable and dereferenceable_or_null attributes).
    pub pointee_size: Size,
    pub pointee_align: Option<Align>,
}

impl ArgAttributes {
    pub fn new() -> Self {
        ArgAttributes {
            regular: ArgAttribute::default(),
            arg_ext: ArgExtension::None,
            pointee_size: Size::ZERO,
            pointee_align: None,
        }
    }

    pub fn ext(&mut self, ext: ArgExtension) -> &mut Self {
        assert!(
            self.arg_ext == ArgExtension::None || self.arg_ext == ext,
            "cannot set {:?} when {:?} is already set",
            ext,
            self.arg_ext
        );
        self.arg_ext = ext;
        self
    }

    pub fn set(&mut self, attr: ArgAttribute) -> &mut Self {
        self.regular |= attr;
        self
    }

    pub fn contains(&self, attr: ArgAttribute) -> bool {
        self.regular.contains(attr)
    }

    /// Checks if these two `ArgAttributes` are equal enough to be considered "the same for all
    /// function call ABIs".
    pub fn eq_abi(&self, other: &Self) -> bool {
        // There's only one regular attribute that matters for the call ABI: InReg.
        // Everything else is things like noalias, dereferenceable, nonnull, ...
        // (This also applies to pointee_size, pointee_align.)
        if self.regular.contains(ArgAttribute::InReg) != other.regular.contains(ArgAttribute::InReg)
        {
            return false;
        }
        // We also compare the sign extension mode -- this could let the callee make assumptions
        // about bits that conceptually were not even passed.
        if self.arg_ext != other.arg_ext {
            return false;
        }
        return true;
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub enum RegKind {
    Integer,
    Float,
    Vector,
}

#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub struct Reg {
    pub kind: RegKind,
    pub size: Size,
}

macro_rules! reg_ctor {
    ($name:ident, $kind:ident, $bits:expr) => {
        pub fn $name() -> Reg {
            Reg { kind: RegKind::$kind, size: Size::from_bits($bits) }
        }
    };
}

impl Reg {
    reg_ctor!(i8, Integer, 8);
    reg_ctor!(i16, Integer, 16);
    reg_ctor!(i32, Integer, 32);
    reg_ctor!(i64, Integer, 64);
    reg_ctor!(i128, Integer, 128);

    reg_ctor!(f32, Float, 32);
    reg_ctor!(f64, Float, 64);
}

impl Reg {
    pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
        let dl = cx.data_layout();
        match self.kind {
            RegKind::Integer => match self.size.bits() {
                1 => dl.i1_align.abi,
                2..=8 => dl.i8_align.abi,
                9..=16 => dl.i16_align.abi,
                17..=32 => dl.i32_align.abi,
                33..=64 => dl.i64_align.abi,
                65..=128 => dl.i128_align.abi,
                _ => panic!("unsupported integer: {self:?}"),
            },
            RegKind::Float => match self.size.bits() {
                32 => dl.f32_align.abi,
                64 => dl.f64_align.abi,
                _ => panic!("unsupported float: {self:?}"),
            },
            RegKind::Vector => dl.vector_align(self.size).abi,
        }
    }
}

/// An argument passed entirely registers with the
/// same kind (e.g., HFA / HVA on PPC64 and AArch64).
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub struct Uniform {
    pub unit: Reg,

    /// The total size of the argument, which can be:
    /// * equal to `unit.size` (one scalar/vector),
    /// * a multiple of `unit.size` (an array of scalar/vectors),
    /// * if `unit.kind` is `Integer`, the last element
    ///   can be shorter, i.e., `{ i64, i64, i32 }` for
    ///   64-bit integers with a total size of 20 bytes.
    pub total: Size,
}

impl From<Reg> for Uniform {
    fn from(unit: Reg) -> Uniform {
        Uniform { unit, total: unit.size }
    }
}

impl Uniform {
    pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
        self.unit.align(cx)
    }
}

/// Describes the type used for `PassMode::Cast`.
///
/// Passing arguments in this mode works as follows: the registers in the `prefix` (the ones that
/// are `Some`) get laid out one after the other (using `repr(C)` layout rules). Then the
/// `rest.unit` register type gets repeated often enough to cover `rest.size`. This describes the
/// actual type used for the call; the Rust type of the argument is then transmuted to this ABI type
/// (and all data in the padding between the registers is dropped).
#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub struct CastTarget {
    pub prefix: [Option<Reg>; 8],
    pub rest: Uniform,
    pub attrs: ArgAttributes,
}

impl From<Reg> for CastTarget {
    fn from(unit: Reg) -> CastTarget {
        CastTarget::from(Uniform::from(unit))
    }
}

impl From<Uniform> for CastTarget {
    fn from(uniform: Uniform) -> CastTarget {
        CastTarget {
            prefix: [None; 8],
            rest: uniform,
            attrs: ArgAttributes {
                regular: ArgAttribute::default(),
                arg_ext: ArgExtension::None,
                pointee_size: Size::ZERO,
                pointee_align: None,
            },
        }
    }
}

impl CastTarget {
    pub fn pair(a: Reg, b: Reg) -> CastTarget {
        CastTarget {
            prefix: [Some(a), None, None, None, None, None, None, None],
            rest: Uniform::from(b),
            attrs: ArgAttributes {
                regular: ArgAttribute::default(),
                arg_ext: ArgExtension::None,
                pointee_size: Size::ZERO,
                pointee_align: None,
            },
        }
    }

    pub fn size<C: HasDataLayout>(&self, _cx: &C) -> Size {
        let mut size = self.rest.total;
        for i in 0..self.prefix.iter().count() {
            match self.prefix[i] {
                Some(v) => size += v.size,
                None => {}
            }
        }
        return size;
    }

    pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
        self.prefix
            .iter()
            .filter_map(|x| x.map(|reg| reg.align(cx)))
            .fold(cx.data_layout().aggregate_align.abi.max(self.rest.align(cx)), |acc, align| {
                acc.max(align)
            })
    }

    /// Checks if these two `CastTarget` are equal enough to be considered "the same for all
    /// function call ABIs".
    pub fn eq_abi(&self, other: &Self) -> bool {
        let CastTarget { prefix: prefix_l, rest: rest_l, attrs: attrs_l } = self;
        let CastTarget { prefix: prefix_r, rest: rest_r, attrs: attrs_r } = other;
        prefix_l == prefix_r && rest_l == rest_r && attrs_l.eq_abi(attrs_r)
    }
}

/// Return value from the `homogeneous_aggregate` test function.
#[derive(Copy, Clone, Debug)]
pub enum HomogeneousAggregate {
    /// Yes, all the "leaf fields" of this struct are passed in the
    /// same way (specified in the `Reg` value).
    Homogeneous(Reg),

    /// There are no leaf fields at all.
    NoData,
}

/// Error from the `homogeneous_aggregate` test function, indicating
/// there are distinct leaf fields passed in different ways,
/// or this is uninhabited.
#[derive(Copy, Clone, Debug)]
pub struct Heterogeneous;

impl HomogeneousAggregate {
    /// If this is a homogeneous aggregate, returns the homogeneous
    /// unit, else `None`.
    pub fn unit(self) -> Option<Reg> {
        match self {
            HomogeneousAggregate::Homogeneous(reg) => Some(reg),
            HomogeneousAggregate::NoData => None,
        }
    }

    /// Try to combine two `HomogeneousAggregate`s, e.g. from two fields in
    /// the same `struct`. Only succeeds if only one of them has any data,
    /// or both units are identical.
    fn merge(self, other: HomogeneousAggregate) -> Result<HomogeneousAggregate, Heterogeneous> {
        match (self, other) {
            (x, HomogeneousAggregate::NoData) | (HomogeneousAggregate::NoData, x) => Ok(x),

            (HomogeneousAggregate::Homogeneous(a), HomogeneousAggregate::Homogeneous(b)) => {
                if a != b {
                    return Err(Heterogeneous);
                }
                Ok(self)
            }
        }
    }
}

impl<'a, Ty> TyAndLayout<'a, Ty> {
    fn is_aggregate(&self) -> bool {
        match self.abi {
            Abi::Uninhabited | Abi::Scalar(_) | Abi::Vector { .. } => false,
            Abi::ScalarPair(..) | Abi::Aggregate { .. } => true,
        }
    }

    /// Returns `Homogeneous` if this layout is an aggregate containing fields of
    /// only a single type (e.g., `(u32, u32)`). Such aggregates are often
    /// special-cased in ABIs.
    ///
    /// Note: We generally ignore 1-ZST fields when computing this value (see #56877).
    ///
    /// This is public so that it can be used in unit tests, but
    /// should generally only be relevant to the ABI details of
    /// specific targets.
    pub fn homogeneous_aggregate<C>(&self, cx: &C) -> Result<HomogeneousAggregate, Heterogeneous>
    where
        Ty: TyAbiInterface<'a, C> + Copy,
    {
        match self.abi {
            Abi::Uninhabited => Err(Heterogeneous),

            // The primitive for this algorithm.
            Abi::Scalar(scalar) => {
                let kind = match scalar.primitive() {
                    abi::Int(..) | abi::Pointer(_) => RegKind::Integer,
                    abi::F32 | abi::F64 => RegKind::Float,
                };
                Ok(HomogeneousAggregate::Homogeneous(Reg { kind, size: self.size }))
            }

            Abi::Vector { .. } => {
                assert!(!self.is_zst());
                Ok(HomogeneousAggregate::Homogeneous(Reg {
                    kind: RegKind::Vector,
                    size: self.size,
                }))
            }

            Abi::ScalarPair(..) | Abi::Aggregate { .. } => {
                // Helper for computing `homogeneous_aggregate`, allowing a custom
                // starting offset (used below for handling variants).
                let from_fields_at =
                    |layout: Self,
                     start: Size|
                     -> Result<(HomogeneousAggregate, Size), Heterogeneous> {
                        let is_union = match layout.fields {
                            FieldsShape::Primitive => {
                                unreachable!("aggregates can't have `FieldsShape::Primitive`")
                            }
                            FieldsShape::Array { count, .. } => {
                                assert_eq!(start, Size::ZERO);

                                let result = if count > 0 {
                                    layout.field(cx, 0).homogeneous_aggregate(cx)?
                                } else {
                                    HomogeneousAggregate::NoData
                                };
                                return Ok((result, layout.size));
                            }
                            FieldsShape::Union(_) => true,
                            FieldsShape::Arbitrary { .. } => false,
                        };

                        let mut result = HomogeneousAggregate::NoData;
                        let mut total = start;

                        for i in 0..layout.fields.count() {
                            let field = layout.field(cx, i);
                            if field.is_1zst() {
                                // No data here and no impact on layout, can be ignored.
                                // (We might be able to also ignore all aligned ZST but that's less clear.)
                                continue;
                            }

                            if !is_union && total != layout.fields.offset(i) {
                                // This field isn't just after the previous one we considered, abort.
                                return Err(Heterogeneous);
                            }

                            result = result.merge(field.homogeneous_aggregate(cx)?)?;

                            // Keep track of the offset (without padding).
                            let size = field.size;
                            if is_union {
                                total = total.max(size);
                            } else {
                                total += size;
                            }
                        }

                        Ok((result, total))
                    };

                let (mut result, mut total) = from_fields_at(*self, Size::ZERO)?;

                match &self.variants {
                    abi::Variants::Single { .. } => {}
                    abi::Variants::Multiple { variants, .. } => {
                        // Treat enum variants like union members.
                        // HACK(eddyb) pretend the `enum` field (discriminant)
                        // is at the start of every variant (otherwise the gap
                        // at the start of all variants would disqualify them).
                        //
                        // NB: for all tagged `enum`s (which include all non-C-like
                        // `enum`s with defined FFI representation), this will
                        // match the homogeneous computation on the equivalent
                        // `struct { tag; union { variant1; ... } }` and/or
                        // `union { struct { tag; variant1; } ... }`
                        // (the offsets of variant fields should be identical
                        // between the two for either to be a homogeneous aggregate).
                        let variant_start = total;
                        for variant_idx in variants.indices() {
                            let (variant_result, variant_total) =
                                from_fields_at(self.for_variant(cx, variant_idx), variant_start)?;

                            result = result.merge(variant_result)?;
                            total = total.max(variant_total);
                        }
                    }
                }

                // There needs to be no padding.
                if total != self.size {
                    Err(Heterogeneous)
                } else {
                    match result {
                        HomogeneousAggregate::Homogeneous(_) => {
                            assert_ne!(total, Size::ZERO);
                        }
                        HomogeneousAggregate::NoData => {
                            assert_eq!(total, Size::ZERO);
                        }
                    }
                    Ok(result)
                }
            }
        }
    }
}

/// Information about how to pass an argument to,
/// or return a value from, a function, under some ABI.
#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
pub struct ArgAbi<'a, Ty> {
    pub layout: TyAndLayout<'a, Ty>,
    pub mode: PassMode,
}

// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
impl<'a, Ty: fmt::Display> fmt::Debug for ArgAbi<'a, Ty> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let ArgAbi { layout, mode } = self;
        f.debug_struct("ArgAbi").field("layout", layout).field("mode", mode).finish()
    }
}

impl<'a, Ty> ArgAbi<'a, Ty> {
    /// This defines the "default ABI" for that type, that is then later adjusted in `fn_abi_adjust_for_abi`.
    pub fn new(
        cx: &impl HasDataLayout,
        layout: TyAndLayout<'a, Ty>,
        scalar_attrs: impl Fn(&TyAndLayout<'a, Ty>, abi::Scalar, Size) -> ArgAttributes,
    ) -> Self {
        let mode = match layout.abi {
            Abi::Uninhabited => PassMode::Ignore,
            Abi::Scalar(scalar) => PassMode::Direct(scalar_attrs(&layout, scalar, Size::ZERO)),
            Abi::ScalarPair(a, b) => PassMode::Pair(
                scalar_attrs(&layout, a, Size::ZERO),
                scalar_attrs(&layout, b, a.size(cx).align_to(b.align(cx).abi)),
            ),
            Abi::Vector { .. } => PassMode::Direct(ArgAttributes::new()),
            // The `Aggregate` ABI should always be adjusted later.
            Abi::Aggregate { .. } => PassMode::Direct(ArgAttributes::new()),
        };
        ArgAbi { layout, mode }
    }

    fn indirect_pass_mode(layout: &TyAndLayout<'a, Ty>) -> PassMode {
        let mut attrs = ArgAttributes::new();

        // For non-immediate arguments the callee gets its own copy of
        // the value on the stack, so there are no aliases. It's also
        // program-invisible so can't possibly capture
        attrs
            .set(ArgAttribute::NoAlias)
            .set(ArgAttribute::NoCapture)
            .set(ArgAttribute::NonNull)
            .set(ArgAttribute::NoUndef);
        attrs.pointee_size = layout.size;
        attrs.pointee_align = Some(layout.align.abi);

        let meta_attrs = layout.is_unsized().then_some(ArgAttributes::new());

        PassMode::Indirect { attrs, meta_attrs, on_stack: false }
    }

    pub fn make_indirect(&mut self) {
        match self.mode {
            PassMode::Direct(_) | PassMode::Pair(_, _) => {}
            PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: false } => return,
            _ => panic!("Tried to make {:?} indirect", self.mode),
        }

        self.mode = Self::indirect_pass_mode(&self.layout);
    }

    pub fn make_indirect_byval(&mut self, byval_align: Option<Align>) {
        self.make_indirect();
        match self.mode {
            PassMode::Indirect { ref mut attrs, meta_attrs: _, ref mut on_stack } => {
                *on_stack = true;

                // Some platforms, like 32-bit x86, change the alignment of the type when passing
                // `byval`. Account for that.
                if let Some(byval_align) = byval_align {
                    // On all targets with byval align this is currently true, so let's assert it.
                    debug_assert!(byval_align >= Align::from_bytes(4).unwrap());
                    attrs.pointee_align = Some(byval_align);
                }
            }
            _ => unreachable!(),
        }
    }

    pub fn extend_integer_width_to(&mut self, bits: u64) {
        // Only integers have signedness
        if let Abi::Scalar(scalar) = self.layout.abi {
            if let abi::Int(i, signed) = scalar.primitive() {
                if i.size().bits() < bits {
                    if let PassMode::Direct(ref mut attrs) = self.mode {
                        if signed {
                            attrs.ext(ArgExtension::Sext)
                        } else {
                            attrs.ext(ArgExtension::Zext)
                        };
                    }
                }
            }
        }
    }

    pub fn cast_to<T: Into<CastTarget>>(&mut self, target: T) {
        self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32: false };
    }

    pub fn cast_to_and_pad_i32<T: Into<CastTarget>>(&mut self, target: T, pad_i32: bool) {
        self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32 };
    }

    pub fn is_indirect(&self) -> bool {
        matches!(self.mode, PassMode::Indirect { .. })
    }

    pub fn is_sized_indirect(&self) -> bool {
        matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ })
    }

    pub fn is_unsized_indirect(&self) -> bool {
        matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ })
    }

    pub fn is_ignore(&self) -> bool {
        matches!(self.mode, PassMode::Ignore)
    }

    /// Checks if these two `ArgAbi` are equal enough to be considered "the same for all
    /// function call ABIs".
    pub fn eq_abi(&self, other: &Self) -> bool {
        // Ideally we'd just compare the `mode`, but that is not enough -- for some modes LLVM will look
        // at the type.
        self.layout.eq_abi(&other.layout) && self.mode.eq_abi(&other.mode)
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub enum Conv {
    // General language calling conventions, for which every target
    // should have its own backend (e.g. LLVM) support.
    C,
    Rust,

    Cold,
    PreserveMost,
    PreserveAll,

    // Target-specific calling conventions.
    ArmAapcs,
    CCmseNonSecureCall,

    Msp430Intr,

    PtxKernel,

    X86Fastcall,
    X86Intr,
    X86Stdcall,
    X86ThisCall,
    X86VectorCall,

    X86_64SysV,
    X86_64Win64,

    AmdGpuKernel,
    AvrInterrupt,
    AvrNonBlockingInterrupt,

    RiscvInterrupt { kind: RiscvInterruptKind },
}

#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub enum RiscvInterruptKind {
    Machine,
    Supervisor,
}

impl RiscvInterruptKind {
    pub fn as_str(&self) -> &'static str {
        match self {
            Self::Machine => "machine",
            Self::Supervisor => "supervisor",
        }
    }
}

/// Metadata describing how the arguments to a native function
/// should be passed in order to respect the native ABI.
///
/// I will do my best to describe this structure, but these
/// comments are reverse-engineered and may be inaccurate. -NDM
#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
pub struct FnAbi<'a, Ty> {
    /// The LLVM types of each argument.
    pub args: Box<[ArgAbi<'a, Ty>]>,

    /// LLVM return type.
    pub ret: ArgAbi<'a, Ty>,

    pub c_variadic: bool,

    /// The count of non-variadic arguments.
    ///
    /// Should only be different from args.len() when c_variadic is true.
    /// This can be used to know whether an argument is variadic or not.
    pub fixed_count: u32,

    pub conv: Conv,

    pub can_unwind: bool,
}

// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
impl<'a, Ty: fmt::Display> fmt::Debug for FnAbi<'a, Ty> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let FnAbi { args, ret, c_variadic, fixed_count, conv, can_unwind } = self;
        f.debug_struct("FnAbi")
            .field("args", args)
            .field("ret", ret)
            .field("c_variadic", c_variadic)
            .field("fixed_count", fixed_count)
            .field("conv", conv)
            .field("can_unwind", can_unwind)
            .finish()
    }
}

/// Error produced by attempting to adjust a `FnAbi`, for a "foreign" ABI.
#[derive(Copy, Clone, Debug, HashStable_Generic)]
pub enum AdjustForForeignAbiError {
    /// Target architecture doesn't support "foreign" (i.e. non-Rust) ABIs.
    Unsupported { arch: Symbol, abi: spec::abi::Abi },
}

impl<'a, Ty> FnAbi<'a, Ty> {
    pub fn adjust_for_foreign_abi<C>(
        &mut self,
        cx: &C,
        abi: spec::abi::Abi,
    ) -> Result<(), AdjustForForeignAbiError>
    where
        Ty: TyAbiInterface<'a, C> + Copy,
        C: HasDataLayout + HasTargetSpec,
    {
        if abi == spec::abi::Abi::X86Interrupt {
            if let Some(arg) = self.args.first_mut() {
                // FIXME(pcwalton): This probably should use the x86 `byval` ABI...
                arg.make_indirect_byval(None);
            }
            return Ok(());
        }

        match &cx.target_spec().arch[..] {
            "x86" => {
                let flavor = if let spec::abi::Abi::Fastcall { .. }
                | spec::abi::Abi::Vectorcall { .. } = abi
                {
                    x86::Flavor::FastcallOrVectorcall
                } else {
                    x86::Flavor::General
                };
                x86::compute_abi_info(cx, self, flavor);
            }
            "x86_64" => match abi {
                spec::abi::Abi::SysV64 { .. } => x86_64::compute_abi_info(cx, self),
                spec::abi::Abi::Win64 { .. } => x86_win64::compute_abi_info(self),
                _ => {
                    if cx.target_spec().is_like_windows {
                        x86_win64::compute_abi_info(self)
                    } else {
                        x86_64::compute_abi_info(cx, self)
                    }
                }
            },
            "aarch64" => {
                let kind = if cx.target_spec().is_like_osx {
                    aarch64::AbiKind::DarwinPCS
                } else if cx.target_spec().is_like_windows {
                    aarch64::AbiKind::Win64
                } else {
                    aarch64::AbiKind::AAPCS
                };
                aarch64::compute_abi_info(cx, self, kind)
            }
            "amdgpu" => amdgpu::compute_abi_info(cx, self),
            "arm" => arm::compute_abi_info(cx, self),
            "avr" => avr::compute_abi_info(self),
            "loongarch64" => loongarch::compute_abi_info(cx, self),
            "m68k" => m68k::compute_abi_info(self),
            "csky" => csky::compute_abi_info(self),
            "mips" | "mips32r6" => mips::compute_abi_info(cx, self),
            "mips64" | "mips64r6" => mips64::compute_abi_info(cx, self),
            "powerpc" => powerpc::compute_abi_info(self),
            "powerpc64" => powerpc64::compute_abi_info(cx, self),
            "s390x" => s390x::compute_abi_info(cx, self),
            "msp430" => msp430::compute_abi_info(self),
            "sparc" => sparc::compute_abi_info(cx, self),
            "sparc64" => sparc64::compute_abi_info(cx, self),
            "nvptx64" => {
                if cx.target_spec().adjust_abi(abi) == spec::abi::Abi::PtxKernel {
                    nvptx64::compute_ptx_kernel_abi_info(cx, self)
                } else {
                    nvptx64::compute_abi_info(self)
                }
            }
            "hexagon" => hexagon::compute_abi_info(self),
            "riscv32" | "riscv64" => riscv::compute_abi_info(cx, self),
            "wasm32" | "wasm64" => {
                if cx.target_spec().adjust_abi(abi) == spec::abi::Abi::Wasm {
                    wasm::compute_wasm_abi_info(self)
                } else {
                    wasm::compute_c_abi_info(cx, self)
                }
            }
            "asmjs" => wasm::compute_c_abi_info(cx, self),
            "bpf" => bpf::compute_abi_info(self),
            arch => {
                return Err(AdjustForForeignAbiError::Unsupported {
                    arch: Symbol::intern(arch),
                    abi,
                });
            }
        }

        Ok(())
    }
}

impl FromStr for Conv {
    type Err = String;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        match s {
            "C" => Ok(Conv::C),
            "Rust" => Ok(Conv::Rust),
            "RustCold" => Ok(Conv::Rust),
            "ArmAapcs" => Ok(Conv::ArmAapcs),
            "CCmseNonSecureCall" => Ok(Conv::CCmseNonSecureCall),
            "Msp430Intr" => Ok(Conv::Msp430Intr),
            "PtxKernel" => Ok(Conv::PtxKernel),
            "X86Fastcall" => Ok(Conv::X86Fastcall),
            "X86Intr" => Ok(Conv::X86Intr),
            "X86Stdcall" => Ok(Conv::X86Stdcall),
            "X86ThisCall" => Ok(Conv::X86ThisCall),
            "X86VectorCall" => Ok(Conv::X86VectorCall),
            "X86_64SysV" => Ok(Conv::X86_64SysV),
            "X86_64Win64" => Ok(Conv::X86_64Win64),
            "AmdGpuKernel" => Ok(Conv::AmdGpuKernel),
            "AvrInterrupt" => Ok(Conv::AvrInterrupt),
            "AvrNonBlockingInterrupt" => Ok(Conv::AvrNonBlockingInterrupt),
            "RiscvInterrupt(machine)" => {
                Ok(Conv::RiscvInterrupt { kind: RiscvInterruptKind::Machine })
            }
            "RiscvInterrupt(supervisor)" => {
                Ok(Conv::RiscvInterrupt { kind: RiscvInterruptKind::Supervisor })
            }
            _ => Err(format!("'{s}' is not a valid value for entry function call convention.")),
        }
    }
}

// Some types are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
mod size_asserts {
    use super::*;
    use rustc_data_structures::static_assert_size;
    // tidy-alphabetical-start
    static_assert_size!(ArgAbi<'_, usize>, 56);
    static_assert_size!(FnAbi<'_, usize>, 80);
    // tidy-alphabetical-end
}