1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
//! Orphan checker: every impl either implements a trait defined in this
//! crate or pertains to a type defined in this crate.

use rustc_data_structures::fx::FxHashSet;
use rustc_errors::{struct_span_err, DelayDm};
use rustc_errors::{Diagnostic, ErrorGuaranteed};
use rustc_hir as hir;
use rustc_middle::ty::util::CheckRegions;
use rustc_middle::ty::GenericArgs;
use rustc_middle::ty::{
    self, AliasKind, ImplPolarity, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitableExt,
    TypeVisitor,
};
use rustc_session::lint;
use rustc_span::def_id::{DefId, LocalDefId};
use rustc_span::Span;
use rustc_trait_selection::traits;
use std::ops::ControlFlow;

#[instrument(skip(tcx), level = "debug")]
pub(crate) fn orphan_check_impl(
    tcx: TyCtxt<'_>,
    impl_def_id: LocalDefId,
) -> Result<(), ErrorGuaranteed> {
    let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap().instantiate_identity();
    trait_ref.error_reported()?;

    let ret = do_orphan_check_impl(tcx, trait_ref, impl_def_id);
    if tcx.trait_is_auto(trait_ref.def_id) {
        lint_auto_trait_impl(tcx, trait_ref, impl_def_id);
    }

    ret
}

fn do_orphan_check_impl<'tcx>(
    tcx: TyCtxt<'tcx>,
    trait_ref: ty::TraitRef<'tcx>,
    def_id: LocalDefId,
) -> Result<(), ErrorGuaranteed> {
    let trait_def_id = trait_ref.def_id;

    match traits::orphan_check(tcx, def_id.to_def_id()) {
        Ok(()) => {}
        Err(err) => {
            let item = tcx.hir().expect_item(def_id);
            let hir::ItemKind::Impl(impl_) = item.kind else {
                bug!("{:?} is not an impl: {:?}", def_id, item);
            };
            let tr = impl_.of_trait.as_ref().unwrap();
            let sp = tcx.def_span(def_id);

            emit_orphan_check_error(
                tcx,
                sp,
                item.span,
                tr.path.span,
                trait_ref,
                impl_.self_ty.span,
                &impl_.generics,
                err,
            )?
        }
    }

    // In addition to the above rules, we restrict impls of auto traits
    // so that they can only be implemented on nominal types, such as structs,
    // enums or foreign types. To see why this restriction exists, consider the
    // following example (#22978). Imagine that crate A defines an auto trait
    // `Foo` and a fn that operates on pairs of types:
    //
    // ```
    // // Crate A
    // auto trait Foo { }
    // fn two_foos<A:Foo,B:Foo>(..) {
    //     one_foo::<(A,B)>(..)
    // }
    // fn one_foo<T:Foo>(..) { .. }
    // ```
    //
    // This type-checks fine; in particular the fn
    // `two_foos` is able to conclude that `(A,B):Foo`
    // because `A:Foo` and `B:Foo`.
    //
    // Now imagine that crate B comes along and does the following:
    //
    // ```
    // struct A { }
    // struct B { }
    // impl Foo for A { }
    // impl Foo for B { }
    // impl !Foo for (A, B) { }
    // ```
    //
    // This final impl is legal according to the orphan
    // rules, but it invalidates the reasoning from
    // `two_foos` above.
    debug!(
        "trait_ref={:?} trait_def_id={:?} trait_is_auto={}",
        trait_ref,
        trait_def_id,
        tcx.trait_is_auto(trait_def_id)
    );

    if tcx.trait_is_auto(trait_def_id) {
        let self_ty = trait_ref.self_ty();

        // If the impl is in the same crate as the auto-trait, almost anything
        // goes.
        //
        //     impl MyAuto for Rc<Something> {}  // okay
        //     impl<T> !MyAuto for *const T {}   // okay
        //     impl<T> MyAuto for T {}           // okay
        //
        // But there is one important exception: implementing for a trait object
        // is not allowed.
        //
        //     impl MyAuto for dyn Trait {}      // NOT OKAY
        //     impl<T: ?Sized> MyAuto for T {}   // NOT OKAY
        //
        // With this restriction, it's guaranteed that an auto-trait is
        // implemented for a trait object if and only if the auto-trait is one
        // of the trait object's trait bounds (or a supertrait of a bound). In
        // other words `dyn Trait + AutoTrait` always implements AutoTrait,
        // while `dyn Trait` never implements AutoTrait.
        //
        // This is necessary in order for autotrait bounds on methods of trait
        // objects to be sound.
        //
        //     auto trait AutoTrait {}
        //
        //     trait ObjectSafeTrait {
        //         fn f(&self) where Self: AutoTrait;
        //     }
        //
        // We can allow f to be called on `dyn ObjectSafeTrait + AutoTrait`.
        //
        // If we didn't deny `impl AutoTrait for dyn Trait`, it would be unsound
        // for the ObjectSafeTrait shown above to be object safe because someone
        // could take some type implementing ObjectSafeTrait but not AutoTrait,
        // unsize it to `dyn ObjectSafeTrait`, and call .f() which has no
        // concrete implementation (issue #50781).
        enum LocalImpl {
            Allow,
            Disallow { problematic_kind: &'static str },
        }

        // If the auto-trait is from a dependency, it must only be getting
        // implemented for a nominal type, and specifically one local to the
        // current crate.
        //
        //     impl<T> Sync for MyStruct<T> {}   // okay
        //
        //     impl Sync for Rc<MyStruct> {}     // NOT OKAY
        enum NonlocalImpl {
            Allow,
            DisallowBecauseNonlocal,
            DisallowOther,
        }

        // Exhaustive match considering that this logic is essential for
        // soundness.
        let (local_impl, nonlocal_impl) = match self_ty.kind() {
            // struct Struct<T>;
            // impl AutoTrait for Struct<Foo> {}
            ty::Adt(self_def, _) => (
                LocalImpl::Allow,
                if self_def.did().is_local() {
                    NonlocalImpl::Allow
                } else {
                    NonlocalImpl::DisallowBecauseNonlocal
                },
            ),

            // extern { type OpaqueType; }
            // impl AutoTrait for OpaqueType {}
            ty::Foreign(did) => (
                LocalImpl::Allow,
                if did.is_local() {
                    NonlocalImpl::Allow
                } else {
                    NonlocalImpl::DisallowBecauseNonlocal
                },
            ),

            // impl AutoTrait for dyn Trait {}
            ty::Dynamic(..) => (
                LocalImpl::Disallow { problematic_kind: "trait object" },
                NonlocalImpl::DisallowOther,
            ),

            // impl<T> AutoTrait for T {}
            // impl<T: ?Sized> AutoTrait for T {}
            ty::Param(..) => (
                if self_ty.is_sized(tcx, tcx.param_env(def_id)) {
                    LocalImpl::Allow
                } else {
                    LocalImpl::Disallow { problematic_kind: "generic type" }
                },
                NonlocalImpl::DisallowOther,
            ),

            ty::Alias(kind, _) => {
                let problematic_kind = match kind {
                    // trait Id { type This: ?Sized; }
                    // impl<T: ?Sized> Id for T {
                    //     type This = T;
                    // }
                    // impl<T: ?Sized> AutoTrait for <T as Id>::This {}
                    AliasKind::Projection => "associated type",
                    // type Foo = (impl Sized, bool)
                    // impl AutoTrait for Foo {}
                    AliasKind::Weak => "type alias",
                    // type Opaque = impl Trait;
                    // impl AutoTrait for Opaque {}
                    AliasKind::Opaque => "opaque type",
                    // ```
                    // struct S<T>(T);
                    // impl<T: ?Sized> S<T> {
                    //     type This = T;
                    // }
                    // impl<T: ?Sized> AutoTrait for S<T>::This {}
                    // ```
                    // FIXME(inherent_associated_types): The example code above currently leads to a cycle
                    AliasKind::Inherent => "associated type",
                };
                (LocalImpl::Disallow { problematic_kind }, NonlocalImpl::DisallowOther)
            }

            ty::Bool
            | ty::Char
            | ty::Int(..)
            | ty::Uint(..)
            | ty::Float(..)
            | ty::Str
            | ty::Array(..)
            | ty::Slice(..)
            | ty::RawPtr(..)
            | ty::Ref(..)
            | ty::FnDef(..)
            | ty::FnPtr(..)
            | ty::Never
            | ty::Tuple(..) => (LocalImpl::Allow, NonlocalImpl::DisallowOther),

            ty::Closure(..)
            | ty::Generator(..)
            | ty::GeneratorWitness(..)
            | ty::Bound(..)
            | ty::Placeholder(..)
            | ty::Infer(..) => {
                let sp = tcx.def_span(def_id);
                span_bug!(sp, "weird self type for autotrait impl")
            }

            ty::Error(..) => (LocalImpl::Allow, NonlocalImpl::Allow),
        };

        if trait_def_id.is_local() {
            match local_impl {
                LocalImpl::Allow => {}
                LocalImpl::Disallow { problematic_kind } => {
                    let msg = format!(
                        "traits with a default impl, like `{trait}`, \
                                cannot be implemented for {problematic_kind} `{self_ty}`",
                        trait = tcx.def_path_str(trait_def_id),
                    );
                    let label = format!(
                        "a trait object implements `{trait}` if and only if `{trait}` \
                                is one of the trait object's trait bounds",
                        trait = tcx.def_path_str(trait_def_id),
                    );
                    let sp = tcx.def_span(def_id);
                    let reported =
                        struct_span_err!(tcx.sess, sp, E0321, "{}", msg).note(label).emit();
                    return Err(reported);
                }
            }
        } else {
            if let Some((msg, label)) = match nonlocal_impl {
                NonlocalImpl::Allow => None,
                NonlocalImpl::DisallowBecauseNonlocal => Some((
                    format!(
                        "cross-crate traits with a default impl, like `{}`, \
                                can only be implemented for a struct/enum type \
                                defined in the current crate",
                        tcx.def_path_str(trait_def_id)
                    ),
                    "can't implement cross-crate trait for type in another crate",
                )),
                NonlocalImpl::DisallowOther => Some((
                    format!(
                        "cross-crate traits with a default impl, like `{}`, can \
                                only be implemented for a struct/enum type, not `{}`",
                        tcx.def_path_str(trait_def_id),
                        self_ty
                    ),
                    "can't implement cross-crate trait with a default impl for \
                            non-struct/enum type",
                )),
            } {
                let sp = tcx.def_span(def_id);
                let reported =
                    struct_span_err!(tcx.sess, sp, E0321, "{}", msg).span_label(sp, label).emit();
                return Err(reported);
            }
        }
    }

    Ok(())
}

fn emit_orphan_check_error<'tcx>(
    tcx: TyCtxt<'tcx>,
    sp: Span,
    full_impl_span: Span,
    trait_span: Span,
    trait_ref: ty::TraitRef<'tcx>,
    self_ty_span: Span,
    generics: &hir::Generics<'tcx>,
    err: traits::OrphanCheckErr<'tcx>,
) -> Result<!, ErrorGuaranteed> {
    let self_ty = trait_ref.self_ty();
    Err(match err {
        traits::OrphanCheckErr::NonLocalInputType(tys) => {
            let msg = match self_ty.kind() {
                ty::Adt(..) => "can be implemented for types defined outside of the crate",
                _ if self_ty.is_primitive() => "can be implemented for primitive types",
                _ => "can be implemented for arbitrary types",
            };
            let mut err = struct_span_err!(
                tcx.sess,
                sp,
                E0117,
                "only traits defined in the current crate {msg}"
            );
            err.span_label(sp, "impl doesn't use only types from inside the current crate");
            for &(mut ty, is_target_ty) in &tys {
                ty = tcx.erase_regions(ty);
                ty = match ty.kind() {
                    // Remove the type arguments from the output, as they are not relevant.
                    // You can think of this as the reverse of `resolve_vars_if_possible`.
                    // That way if we had `Vec<MyType>`, we will properly attribute the
                    // problem to `Vec<T>` and avoid confusing the user if they were to see
                    // `MyType` in the error.
                    ty::Adt(def, _) => Ty::new_adt(tcx, *def, ty::List::empty()),
                    _ => ty,
                };
                let msg = |ty: &str, postfix: &str| {
                    format!("{ty} is not defined in the current crate{postfix}")
                };

                let this = |name: &str| {
                    if !trait_ref.def_id.is_local() && !is_target_ty {
                        msg("this", " because this is a foreign trait")
                    } else {
                        msg("this", &format!(" because {name} are always foreign"))
                    }
                };
                let msg = match &ty.kind() {
                    ty::Slice(_) => this("slices"),
                    ty::Array(..) => this("arrays"),
                    ty::Tuple(..) => this("tuples"),
                    ty::Alias(ty::Opaque, ..) => {
                        "type alias impl trait is treated as if it were foreign, \
                        because its hidden type could be from a foreign crate"
                            .to_string()
                    }
                    ty::RawPtr(ptr_ty) => {
                        emit_newtype_suggestion_for_raw_ptr(
                            full_impl_span,
                            self_ty,
                            self_ty_span,
                            ptr_ty,
                            &mut err,
                        );

                        msg(&format!("`{ty}`"), " because raw pointers are always foreign")
                    }
                    _ => msg(&format!("`{ty}`"), ""),
                };

                if is_target_ty {
                    // Point at `D<A>` in `impl<A, B> for C<B> in D<A>`
                    err.span_label(self_ty_span, msg);
                } else {
                    // Point at `C<B>` in `impl<A, B> for C<B> in D<A>`
                    err.span_label(trait_span, msg);
                }
            }
            err.note("define and implement a trait or new type instead");
            err.emit()
        }
        traits::OrphanCheckErr::UncoveredTy(param_ty, local_type) => {
            let mut sp = sp;
            for param in generics.params {
                if param.name.ident().to_string() == param_ty.to_string() {
                    sp = param.span;
                }
            }

            match local_type {
                Some(local_type) => struct_span_err!(
                    tcx.sess,
                    sp,
                    E0210,
                    "type parameter `{}` must be covered by another type \
                    when it appears before the first local type (`{}`)",
                    param_ty,
                    local_type
                )
                .span_label(
                    sp,
                    format!(
                        "type parameter `{param_ty}` must be covered by another type \
                    when it appears before the first local type (`{local_type}`)"
                    ),
                )
                .note(
                    "implementing a foreign trait is only possible if at \
                        least one of the types for which it is implemented is local, \
                        and no uncovered type parameters appear before that first \
                        local type",
                )
                .note(
                    "in this case, 'before' refers to the following order: \
                        `impl<..> ForeignTrait<T1, ..., Tn> for T0`, \
                        where `T0` is the first and `Tn` is the last",
                )
                .emit(),
                None => struct_span_err!(
                    tcx.sess,
                    sp,
                    E0210,
                    "type parameter `{}` must be used as the type parameter for some \
                    local type (e.g., `MyStruct<{}>`)",
                    param_ty,
                    param_ty
                )
                .span_label(
                    sp,
                    format!(
                        "type parameter `{param_ty}` must be used as the type parameter for some \
                    local type",
                    ),
                )
                .note(
                    "implementing a foreign trait is only possible if at \
                        least one of the types for which it is implemented is local",
                )
                .note(
                    "only traits defined in the current crate can be \
                        implemented for a type parameter",
                )
                .emit(),
            }
        }
    })
}

fn emit_newtype_suggestion_for_raw_ptr(
    full_impl_span: Span,
    self_ty: Ty<'_>,
    self_ty_span: Span,
    ptr_ty: &ty::TypeAndMut<'_>,
    diag: &mut Diagnostic,
) {
    if !self_ty.has_param() {
        let mut_key = ptr_ty.mutbl.prefix_str();
        let msg_sugg = "consider introducing a new wrapper type".to_owned();
        let sugg = vec![
            (
                full_impl_span.shrink_to_lo(),
                format!("struct WrapperType(*{}{});\n\n", mut_key, ptr_ty.ty),
            ),
            (self_ty_span, "WrapperType".to_owned()),
        ];
        diag.multipart_suggestion(msg_sugg, sugg, rustc_errors::Applicability::MaybeIncorrect);
    }
}

/// Lint impls of auto traits if they are likely to have
/// unsound or surprising effects on auto impls.
fn lint_auto_trait_impl<'tcx>(
    tcx: TyCtxt<'tcx>,
    trait_ref: ty::TraitRef<'tcx>,
    impl_def_id: LocalDefId,
) {
    assert_eq!(trait_ref.args.len(), 1);
    let self_ty = trait_ref.self_ty();
    let (self_type_did, args) = match self_ty.kind() {
        ty::Adt(def, args) => (def.did(), args),
        _ => {
            // FIXME: should also lint for stuff like `&i32` but
            // considering that auto traits are unstable, that
            // isn't too important for now as this only affects
            // crates using `nightly`, and std.
            return;
        }
    };

    // Impls which completely cover a given root type are fine as they
    // disable auto impls entirely. So only lint if the args
    // are not a permutation of the identity args.
    let Err(arg) = tcx.uses_unique_generic_params(args, CheckRegions::No) else {
        // ok
        return;
    };

    // Ideally:
    //
    // - compute the requirements for the auto impl candidate
    // - check whether these are implied by the non covering impls
    // - if not, emit the lint
    //
    // What we do here is a bit simpler:
    //
    // - badly check if an auto impl candidate definitely does not apply
    //   for the given simplified type
    // - if so, do not lint
    if fast_reject_auto_impl(tcx, trait_ref.def_id, self_ty) {
        // ok
        return;
    }

    tcx.struct_span_lint_hir(
        lint::builtin::SUSPICIOUS_AUTO_TRAIT_IMPLS,
        tcx.hir().local_def_id_to_hir_id(impl_def_id),
        tcx.def_span(impl_def_id),
        DelayDm(|| {
            format!(
                "cross-crate traits with a default impl, like `{}`, \
                         should not be specialized",
                tcx.def_path_str(trait_ref.def_id),
            )
        }),
        |lint| {
            let item_span = tcx.def_span(self_type_did);
            let self_descr = tcx.def_descr(self_type_did);
            match arg {
                ty::util::NotUniqueParam::DuplicateParam(arg) => {
                    lint.note(format!("`{arg}` is mentioned multiple times"));
                }
                ty::util::NotUniqueParam::NotParam(arg) => {
                    lint.note(format!("`{arg}` is not a generic parameter"));
                }
            }
            lint.span_note(
                item_span,
                format!(
                    "try using the same sequence of generic parameters as the {self_descr} definition",
                ),
            )
        },
    );
}

fn fast_reject_auto_impl<'tcx>(tcx: TyCtxt<'tcx>, trait_def_id: DefId, self_ty: Ty<'tcx>) -> bool {
    struct DisableAutoTraitVisitor<'tcx> {
        tcx: TyCtxt<'tcx>,
        trait_def_id: DefId,
        self_ty_root: Ty<'tcx>,
        seen: FxHashSet<DefId>,
    }

    impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for DisableAutoTraitVisitor<'tcx> {
        type BreakTy = ();
        fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
            let tcx = self.tcx;
            if ty != self.self_ty_root {
                for impl_def_id in tcx.non_blanket_impls_for_ty(self.trait_def_id, ty) {
                    match tcx.impl_polarity(impl_def_id) {
                        ImplPolarity::Negative => return ControlFlow::Break(()),
                        ImplPolarity::Reservation => {}
                        // FIXME(@lcnr): That's probably not good enough, idk
                        //
                        // We might just want to take the rustdoc code and somehow avoid
                        // explicit impls for `Self`.
                        ImplPolarity::Positive => return ControlFlow::Continue(()),
                    }
                }
            }

            match ty.kind() {
                ty::Adt(def, args) if def.is_phantom_data() => args.visit_with(self),
                ty::Adt(def, args) => {
                    // @lcnr: This is the only place where cycles can happen. We avoid this
                    // by only visiting each `DefId` once.
                    //
                    // This will be is incorrect in subtle cases, but I don't care :)
                    if self.seen.insert(def.did()) {
                        for ty in def.all_fields().map(|field| field.ty(tcx, args)) {
                            ty.visit_with(self)?;
                        }
                    }

                    ControlFlow::Continue(())
                }
                _ => ty.super_visit_with(self),
            }
        }
    }

    let self_ty_root = match self_ty.kind() {
        ty::Adt(def, _) => Ty::new_adt(tcx, *def, GenericArgs::identity_for_item(tcx, def.did())),
        _ => unimplemented!("unexpected self ty {:?}", self_ty),
    };

    self_ty_root
        .visit_with(&mut DisableAutoTraitVisitor {
            tcx,
            self_ty_root,
            trait_def_id,
            seen: FxHashSet::default(),
        })
        .is_break()
}