1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
//! This code is kind of an alternate way of doing subtyping,
//! supertyping, and type equating, distinct from the `combine.rs`
//! code but very similar in its effect and design. Eventually the two
//! ought to be merged. This code is intended for use in NLL and chalk.
//!
//! Here are the key differences:
//!
//! - This code may choose to bypass some checks (e.g., the occurs check)
//!   in the case where we know that there are no unbound type inference
//!   variables. This is the case for NLL, because at NLL time types are fully
//!   inferred up-to regions.
//! - This code uses "universes" to handle higher-ranked regions and
//!   not the leak-check. This is "more correct" than what rustc does
//!   and we are generally migrating in this direction, but NLL had to
//!   get there first.
//!
//! Also, this code assumes that there are no bound types at all, not even
//! free ones. This is ok because:
//! - we are not relating anything quantified over some type variable
//! - we will have instantiated all the bound type vars already (the one
//!   thing we relate in chalk are basically domain goals and their
//!   constituents)

use rustc_data_structures::fx::FxHashMap;
use rustc_middle::traits::ObligationCause;
use rustc_middle::ty::fold::FnMutDelegate;
use rustc_middle::ty::relate::{Relate, RelateResult, TypeRelation};
use rustc_middle::ty::visit::TypeVisitableExt;
use rustc_middle::ty::{self, InferConst, Ty, TyCtxt};
use rustc_span::{Span, Symbol};
use std::fmt::Debug;

use crate::infer::combine::ObligationEmittingRelation;
use crate::infer::generalize::{self, Generalization};
use crate::infer::InferCtxt;
use crate::infer::{TypeVariableOrigin, TypeVariableOriginKind};
use crate::traits::{Obligation, PredicateObligations};

pub struct TypeRelating<'me, 'tcx, D>
where
    D: TypeRelatingDelegate<'tcx>,
{
    infcx: &'me InferCtxt<'tcx>,

    /// Callback to use when we deduce an outlives relationship.
    delegate: D,

    /// How are we relating `a` and `b`?
    ///
    /// - Covariant means `a <: b`.
    /// - Contravariant means `b <: a`.
    /// - Invariant means `a == b`.
    /// - Bivariant means that it doesn't matter.
    ambient_variance: ty::Variance,

    ambient_variance_info: ty::VarianceDiagInfo<'tcx>,
}

pub trait TypeRelatingDelegate<'tcx> {
    fn param_env(&self) -> ty::ParamEnv<'tcx>;
    fn span(&self) -> Span;

    /// Push a constraint `sup: sub` -- this constraint must be
    /// satisfied for the two types to be related. `sub` and `sup` may
    /// be regions from the type or new variables created through the
    /// delegate.
    fn push_outlives(
        &mut self,
        sup: ty::Region<'tcx>,
        sub: ty::Region<'tcx>,
        info: ty::VarianceDiagInfo<'tcx>,
    );

    fn register_obligations(&mut self, obligations: PredicateObligations<'tcx>);

    /// Creates a new universe index. Used when instantiating placeholders.
    fn create_next_universe(&mut self) -> ty::UniverseIndex;

    /// Creates a new region variable representing a higher-ranked
    /// region that is instantiated existentially. This creates an
    /// inference variable, typically.
    ///
    /// So e.g., if you have `for<'a> fn(..) <: for<'b> fn(..)`, then
    /// we will invoke this method to instantiate `'a` with an
    /// inference variable (though `'b` would be instantiated first,
    /// as a placeholder).
    fn next_existential_region_var(
        &mut self,
        was_placeholder: bool,
        name: Option<Symbol>,
    ) -> ty::Region<'tcx>;

    /// Creates a new region variable representing a
    /// higher-ranked region that is instantiated universally.
    /// This creates a new region placeholder, typically.
    ///
    /// So e.g., if you have `for<'a> fn(..) <: for<'b> fn(..)`, then
    /// we will invoke this method to instantiate `'b` with a
    /// placeholder region.
    fn next_placeholder_region(&mut self, placeholder: ty::PlaceholderRegion) -> ty::Region<'tcx>;

    /// Creates a new existential region in the given universe. This
    /// is used when handling subtyping and type variables -- if we
    /// have that `?X <: Foo<'a>`, for example, we would instantiate
    /// `?X` with a type like `Foo<'?0>` where `'?0` is a fresh
    /// existential variable created by this function. We would then
    /// relate `Foo<'?0>` with `Foo<'a>` (and probably add an outlives
    /// relation stating that `'?0: 'a`).
    fn generalize_existential(&mut self, universe: ty::UniverseIndex) -> ty::Region<'tcx>;

    /// Enables some optimizations if we do not expect inference variables
    /// in the RHS of the relation.
    fn forbid_inference_vars() -> bool;
}

#[derive(Copy, Clone)]
struct UniversallyQuantified(bool);

impl<'me, 'tcx, D> TypeRelating<'me, 'tcx, D>
where
    D: TypeRelatingDelegate<'tcx>,
{
    pub fn new(infcx: &'me InferCtxt<'tcx>, delegate: D, ambient_variance: ty::Variance) -> Self {
        Self {
            infcx,
            delegate,
            ambient_variance,
            ambient_variance_info: ty::VarianceDiagInfo::default(),
        }
    }

    fn ambient_covariance(&self) -> bool {
        match self.ambient_variance {
            ty::Variance::Covariant | ty::Variance::Invariant => true,
            ty::Variance::Contravariant | ty::Variance::Bivariant => false,
        }
    }

    fn ambient_contravariance(&self) -> bool {
        match self.ambient_variance {
            ty::Variance::Contravariant | ty::Variance::Invariant => true,
            ty::Variance::Covariant | ty::Variance::Bivariant => false,
        }
    }

    /// Push a new outlives requirement into our output set of
    /// constraints.
    fn push_outlives(
        &mut self,
        sup: ty::Region<'tcx>,
        sub: ty::Region<'tcx>,
        info: ty::VarianceDiagInfo<'tcx>,
    ) {
        debug!("push_outlives({:?}: {:?})", sup, sub);

        self.delegate.push_outlives(sup, sub, info);
    }

    /// Relate a type inference variable with a value type. This works
    /// by creating a "generalization" G of the value where all the
    /// lifetimes are replaced with fresh inference values. This
    /// generalization G becomes the value of the inference variable,
    /// and is then related in turn to the value. So e.g. if you had
    /// `vid = ?0` and `value = &'a u32`, we might first instantiate
    /// `?0` to a type like `&'0 u32` where `'0` is a fresh variable,
    /// and then relate `&'0 u32` with `&'a u32` (resulting in
    /// relations between `'0` and `'a`).
    ///
    /// The variable `pair` can be either a `(vid, ty)` or `(ty, vid)`
    /// -- in other words, it is always an (unresolved) inference
    /// variable `vid` and a type `ty` that are being related, but the
    /// vid may appear either as the "a" type or the "b" type,
    /// depending on where it appears in the tuple. The trait
    /// `VidValuePair` lets us work with the vid/type while preserving
    /// the "sidedness" when necessary -- the sidedness is relevant in
    /// particular for the variance and set of in-scope things.
    fn relate_ty_var<PAIR: VidValuePair<'tcx>>(
        &mut self,
        pair: PAIR,
    ) -> RelateResult<'tcx, Ty<'tcx>> {
        debug!("relate_ty_var({:?})", pair);

        let vid = pair.vid();
        let value_ty = pair.value_ty();

        // FIXME(invariance) -- this logic assumes invariance, but that is wrong.
        // This only presently applies to chalk integration, as NLL
        // doesn't permit type variables to appear on both sides (and
        // doesn't use lazy norm).
        match *value_ty.kind() {
            ty::Infer(ty::TyVar(value_vid)) => {
                // Two type variables: just equate them.
                self.infcx.inner.borrow_mut().type_variables().equate(vid, value_vid);
                return Ok(value_ty);
            }

            _ => (),
        }

        let generalized_ty = self.generalize(value_ty, vid)?;
        debug!("relate_ty_var: generalized_ty = {:?}", generalized_ty);

        if D::forbid_inference_vars() {
            // In NLL, we don't have type inference variables
            // floating around, so we can do this rather imprecise
            // variant of the occurs-check.
            assert!(!generalized_ty.has_non_region_infer());
        }

        self.infcx.inner.borrow_mut().type_variables().instantiate(vid, generalized_ty);

        // Relate the generalized kind to the original one.
        let result = pair.relate_generalized_ty(self, generalized_ty);

        debug!("relate_ty_var: complete, result = {:?}", result);
        result
    }

    fn generalize(&mut self, ty: Ty<'tcx>, for_vid: ty::TyVid) -> RelateResult<'tcx, Ty<'tcx>> {
        let Generalization { value: ty, needs_wf: _ } = generalize::generalize(
            self.infcx,
            &mut self.delegate,
            ty,
            for_vid,
            self.ambient_variance,
        )?;
        Ok(ty)
    }

    fn relate_opaques(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
        let (a, b) = if self.a_is_expected() { (a, b) } else { (b, a) };
        let mut generalize = |ty, ty_is_expected| {
            let var = self.infcx.next_ty_var_id_in_universe(
                TypeVariableOrigin {
                    kind: TypeVariableOriginKind::MiscVariable,
                    span: self.delegate.span(),
                },
                ty::UniverseIndex::ROOT,
            );
            if ty_is_expected {
                self.relate_ty_var((ty, var))
            } else {
                self.relate_ty_var((var, ty))
            }
        };
        let (a, b) = match (a.kind(), b.kind()) {
            (&ty::Alias(ty::Opaque, ..), _) => (a, generalize(b, false)?),
            (_, &ty::Alias(ty::Opaque, ..)) => (generalize(a, true)?, b),
            _ => unreachable!(),
        };
        let cause = ObligationCause::dummy_with_span(self.delegate.span());
        let obligations = self
            .infcx
            .handle_opaque_type(a, b, true, &cause, self.delegate.param_env())?
            .obligations;
        self.delegate.register_obligations(obligations);
        trace!(a = ?a.kind(), b = ?b.kind(), "opaque type instantiated");
        Ok(a)
    }

    #[instrument(skip(self), level = "debug")]
    fn instantiate_binder_with_placeholders<T>(&mut self, binder: ty::Binder<'tcx, T>) -> T
    where
        T: ty::TypeFoldable<TyCtxt<'tcx>> + Copy,
    {
        if let Some(inner) = binder.no_bound_vars() {
            return inner;
        }

        let mut next_region = {
            let nll_delegate = &mut self.delegate;
            let mut lazy_universe = None;

            move |br: ty::BoundRegion| {
                // The first time this closure is called, create a
                // new universe for the placeholders we will make
                // from here out.
                let universe = lazy_universe.unwrap_or_else(|| {
                    let universe = nll_delegate.create_next_universe();
                    lazy_universe = Some(universe);
                    universe
                });

                let placeholder = ty::PlaceholderRegion { universe, bound: br };
                debug!(?placeholder);
                let placeholder_reg = nll_delegate.next_placeholder_region(placeholder);
                debug!(?placeholder_reg);

                placeholder_reg
            }
        };

        let delegate = FnMutDelegate {
            regions: &mut next_region,
            types: &mut |_bound_ty: ty::BoundTy| {
                unreachable!("we only replace regions in nll_relate, not types")
            },
            consts: &mut |_bound_var: ty::BoundVar, _ty| {
                unreachable!("we only replace regions in nll_relate, not consts")
            },
        };

        let replaced = self.infcx.tcx.replace_bound_vars_uncached(binder, delegate);
        debug!(?replaced);

        replaced
    }

    #[instrument(skip(self), level = "debug")]
    fn instantiate_binder_with_existentials<T>(&mut self, binder: ty::Binder<'tcx, T>) -> T
    where
        T: ty::TypeFoldable<TyCtxt<'tcx>> + Copy,
    {
        if let Some(inner) = binder.no_bound_vars() {
            return inner;
        }

        let mut next_region = {
            let nll_delegate = &mut self.delegate;
            let mut reg_map = FxHashMap::default();

            move |br: ty::BoundRegion| {
                if let Some(ex_reg_var) = reg_map.get(&br) {
                    return *ex_reg_var;
                } else {
                    let ex_reg_var =
                        nll_delegate.next_existential_region_var(true, br.kind.get_name());
                    debug!(?ex_reg_var);
                    reg_map.insert(br, ex_reg_var);

                    ex_reg_var
                }
            }
        };

        let delegate = FnMutDelegate {
            regions: &mut next_region,
            types: &mut |_bound_ty: ty::BoundTy| {
                unreachable!("we only replace regions in nll_relate, not types")
            },
            consts: &mut |_bound_var: ty::BoundVar, _ty| {
                unreachable!("we only replace regions in nll_relate, not consts")
            },
        };

        let replaced = self.infcx.tcx.replace_bound_vars_uncached(binder, delegate);
        debug!(?replaced);

        replaced
    }
}

/// When we instantiate an inference variable with a value in
/// `relate_ty_var`, we always have the pair of a `TyVid` and a `Ty`,
/// but the ordering may vary (depending on whether the inference
/// variable was found on the `a` or `b` sides). Therefore, this trait
/// allows us to factor out common code, while preserving the order
/// when needed.
trait VidValuePair<'tcx>: Debug {
    /// Extract the inference variable (which could be either the
    /// first or second part of the tuple).
    fn vid(&self) -> ty::TyVid;

    /// Extract the value it is being related to (which will be the
    /// opposite part of the tuple from the vid).
    fn value_ty(&self) -> Ty<'tcx>;

    /// Given a generalized type G that should replace the vid, relate
    /// G to the value, putting G on whichever side the vid would have
    /// appeared.
    fn relate_generalized_ty<D>(
        &self,
        relate: &mut TypeRelating<'_, 'tcx, D>,
        generalized_ty: Ty<'tcx>,
    ) -> RelateResult<'tcx, Ty<'tcx>>
    where
        D: TypeRelatingDelegate<'tcx>;
}

impl<'tcx> VidValuePair<'tcx> for (ty::TyVid, Ty<'tcx>) {
    fn vid(&self) -> ty::TyVid {
        self.0
    }

    fn value_ty(&self) -> Ty<'tcx> {
        self.1
    }

    fn relate_generalized_ty<D>(
        &self,
        relate: &mut TypeRelating<'_, 'tcx, D>,
        generalized_ty: Ty<'tcx>,
    ) -> RelateResult<'tcx, Ty<'tcx>>
    where
        D: TypeRelatingDelegate<'tcx>,
    {
        relate.relate(generalized_ty, self.value_ty())
    }
}

// In this case, the "vid" is the "b" type.
impl<'tcx> VidValuePair<'tcx> for (Ty<'tcx>, ty::TyVid) {
    fn vid(&self) -> ty::TyVid {
        self.1
    }

    fn value_ty(&self) -> Ty<'tcx> {
        self.0
    }

    fn relate_generalized_ty<D>(
        &self,
        relate: &mut TypeRelating<'_, 'tcx, D>,
        generalized_ty: Ty<'tcx>,
    ) -> RelateResult<'tcx, Ty<'tcx>>
    where
        D: TypeRelatingDelegate<'tcx>,
    {
        relate.relate(self.value_ty(), generalized_ty)
    }
}

impl<'tcx, D> TypeRelation<'tcx> for TypeRelating<'_, 'tcx, D>
where
    D: TypeRelatingDelegate<'tcx>,
{
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.infcx.tcx
    }

    fn param_env(&self) -> ty::ParamEnv<'tcx> {
        self.delegate.param_env()
    }

    fn tag(&self) -> &'static str {
        "nll::subtype"
    }

    fn a_is_expected(&self) -> bool {
        true
    }

    #[instrument(skip(self, info), level = "trace", ret)]
    fn relate_with_variance<T: Relate<'tcx>>(
        &mut self,
        variance: ty::Variance,
        info: ty::VarianceDiagInfo<'tcx>,
        a: T,
        b: T,
    ) -> RelateResult<'tcx, T> {
        let old_ambient_variance = self.ambient_variance;
        self.ambient_variance = self.ambient_variance.xform(variance);
        self.ambient_variance_info = self.ambient_variance_info.xform(info);

        debug!(?self.ambient_variance);
        // In a bivariant context this always succeeds.
        let r =
            if self.ambient_variance == ty::Variance::Bivariant { a } else { self.relate(a, b)? };

        self.ambient_variance = old_ambient_variance;

        Ok(r)
    }

    #[instrument(skip(self), level = "debug")]
    fn tys(&mut self, a: Ty<'tcx>, mut b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
        let infcx = self.infcx;

        let a = self.infcx.shallow_resolve(a);

        if !D::forbid_inference_vars() {
            b = self.infcx.shallow_resolve(b);
        }

        if a == b {
            return Ok(a);
        }

        match (a.kind(), b.kind()) {
            (_, &ty::Infer(ty::TyVar(vid))) => {
                if D::forbid_inference_vars() {
                    // Forbid inference variables in the RHS.
                    bug!("unexpected inference var {:?}", b)
                } else {
                    self.relate_ty_var((a, vid))
                }
            }

            (&ty::Infer(ty::TyVar(vid)), _) => self.relate_ty_var((vid, b)),

            (
                &ty::Alias(ty::Opaque, ty::AliasTy { def_id: a_def_id, .. }),
                &ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, .. }),
            ) if a_def_id == b_def_id || infcx.next_trait_solver() => {
                infcx.super_combine_tys(self, a, b).or_else(|err| {
                    // This behavior is only there for the old solver, the new solver
                    // shouldn't ever fail. Instead, it unconditionally emits an
                    // alias-relate goal.
                    assert!(!self.infcx.next_trait_solver());
                    self.tcx().sess.delay_span_bug(
                        self.delegate.span(),
                        "failure to relate an opaque to itself should result in an error later on",
                    );
                    if a_def_id.is_local() { self.relate_opaques(a, b) } else { Err(err) }
                })
            }
            (&ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }), _)
            | (_, &ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }))
                if def_id.is_local() && !self.infcx.next_trait_solver() =>
            {
                self.relate_opaques(a, b)
            }

            _ => {
                debug!(?a, ?b, ?self.ambient_variance);

                // Will also handle unification of `IntVar` and `FloatVar`.
                self.infcx.super_combine_tys(self, a, b)
            }
        }
    }

    #[instrument(skip(self), level = "trace")]
    fn regions(
        &mut self,
        a: ty::Region<'tcx>,
        b: ty::Region<'tcx>,
    ) -> RelateResult<'tcx, ty::Region<'tcx>> {
        debug!(?self.ambient_variance);

        if self.ambient_covariance() {
            // Covariant: &'a u8 <: &'b u8. Hence, `'a: 'b`.
            self.push_outlives(a, b, self.ambient_variance_info);
        }

        if self.ambient_contravariance() {
            // Contravariant: &'b u8 <: &'a u8. Hence, `'b: 'a`.
            self.push_outlives(b, a, self.ambient_variance_info);
        }

        Ok(a)
    }

    fn consts(
        &mut self,
        a: ty::Const<'tcx>,
        mut b: ty::Const<'tcx>,
    ) -> RelateResult<'tcx, ty::Const<'tcx>> {
        let a = self.infcx.shallow_resolve(a);

        if !D::forbid_inference_vars() {
            b = self.infcx.shallow_resolve(b);
        }

        match b.kind() {
            ty::ConstKind::Infer(InferConst::Var(_)) if D::forbid_inference_vars() => {
                // Forbid inference variables in the RHS.
                self.infcx.tcx.sess.delay_span_bug(
                    self.delegate.span(),
                    format!("unexpected inference var {b:?}",),
                );
                Ok(a)
            }
            // FIXME(invariance): see the related FIXME above.
            _ => self.infcx.super_combine_consts(self, a, b),
        }
    }

    #[instrument(skip(self), level = "trace")]
    fn binders<T>(
        &mut self,
        a: ty::Binder<'tcx, T>,
        b: ty::Binder<'tcx, T>,
    ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
    where
        T: Relate<'tcx>,
    {
        // We want that
        //
        // ```
        // for<'a> fn(&'a u32) -> &'a u32 <:
        //   fn(&'b u32) -> &'b u32
        // ```
        //
        // but not
        //
        // ```
        // fn(&'a u32) -> &'a u32 <:
        //   for<'b> fn(&'b u32) -> &'b u32
        // ```
        //
        // We therefore proceed as follows:
        //
        // - Instantiate binders on `b` universally, yielding a universe U1.
        // - Instantiate binders on `a` existentially in U1.

        debug!(?self.ambient_variance);

        if let (Some(a), Some(b)) = (a.no_bound_vars(), b.no_bound_vars()) {
            // Fast path for the common case.
            self.relate(a, b)?;
            return Ok(ty::Binder::dummy(a));
        }

        if self.ambient_covariance() {
            // Covariance, so we want `for<..> A <: for<..> B` --
            // therefore we compare any instantiation of A (i.e., A
            // instantiated with existentials) against every
            // instantiation of B (i.e., B instantiated with
            // universals).

            // Reset the ambient variance to covariant. This is needed
            // to correctly handle cases like
            //
            //     for<'a> fn(&'a u32, &'a u32) == for<'b, 'c> fn(&'b u32, &'c u32)
            //
            // Somewhat surprisingly, these two types are actually
            // **equal**, even though the one on the right looks more
            // polymorphic. The reason is due to subtyping. To see it,
            // consider that each function can call the other:
            //
            // - The left function can call the right with `'b` and
            //   `'c` both equal to `'a`
            //
            // - The right function can call the left with `'a` set to
            //   `{P}`, where P is the point in the CFG where the call
            //   itself occurs. Note that `'b` and `'c` must both
            //   include P. At the point, the call works because of
            //   subtyping (i.e., `&'b u32 <: &{P} u32`).
            let variance = std::mem::replace(&mut self.ambient_variance, ty::Variance::Covariant);

            // Note: the order here is important. Create the placeholders first, otherwise
            // we assign the wrong universe to the existential!
            let b_replaced = self.instantiate_binder_with_placeholders(b);
            let a_replaced = self.instantiate_binder_with_existentials(a);

            self.relate(a_replaced, b_replaced)?;

            self.ambient_variance = variance;
        }

        if self.ambient_contravariance() {
            // Contravariance, so we want `for<..> A :> for<..> B`
            // -- therefore we compare every instantiation of A (i.e.,
            // A instantiated with universals) against any
            // instantiation of B (i.e., B instantiated with
            // existentials). Opposite of above.

            // Reset ambient variance to contravariance. See the
            // covariant case above for an explanation.
            let variance =
                std::mem::replace(&mut self.ambient_variance, ty::Variance::Contravariant);

            let a_replaced = self.instantiate_binder_with_placeholders(a);
            let b_replaced = self.instantiate_binder_with_existentials(b);

            self.relate(a_replaced, b_replaced)?;

            self.ambient_variance = variance;
        }

        Ok(a)
    }
}

impl<'tcx, D> ObligationEmittingRelation<'tcx> for TypeRelating<'_, 'tcx, D>
where
    D: TypeRelatingDelegate<'tcx>,
{
    fn register_predicates(&mut self, obligations: impl IntoIterator<Item: ty::ToPredicate<'tcx>>) {
        self.delegate.register_obligations(
            obligations
                .into_iter()
                .map(|to_pred| {
                    Obligation::new(self.tcx(), ObligationCause::dummy(), self.param_env(), to_pred)
                })
                .collect(),
        );
    }

    fn register_obligations(&mut self, obligations: PredicateObligations<'tcx>) {
        self.delegate.register_obligations(obligations);
    }

    fn alias_relate_direction(&self) -> ty::AliasRelationDirection {
        unreachable!("manually overridden to handle ty::Variance::Contravariant ambient variance")
    }

    fn register_type_relate_obligation(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) {
        self.register_predicates([ty::Binder::dummy(match self.ambient_variance {
            ty::Variance::Covariant => ty::PredicateKind::AliasRelate(
                a.into(),
                b.into(),
                ty::AliasRelationDirection::Subtype,
            ),
            // a :> b is b <: a
            ty::Variance::Contravariant => ty::PredicateKind::AliasRelate(
                b.into(),
                a.into(),
                ty::AliasRelationDirection::Subtype,
            ),
            ty::Variance::Invariant => ty::PredicateKind::AliasRelate(
                a.into(),
                b.into(),
                ty::AliasRelationDirection::Equate,
            ),
            // FIXME(deferred_projection_equality): Implement this when we trigger it.
            // Probably just need to do nothing here.
            ty::Variance::Bivariant => unreachable!(),
        })]);
    }
}