1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
//! This code is kind of an alternate way of doing subtyping,
//! supertyping, and type equating, distinct from the `combine.rs`
//! code but very similar in its effect and design. Eventually the two
//! ought to be merged. This code is intended for use in NLL and chalk.
//!
//! Here are the key differences:
//!
//! - This code may choose to bypass some checks (e.g., the occurs check)
//! in the case where we know that there are no unbound type inference
//! variables. This is the case for NLL, because at NLL time types are fully
//! inferred up-to regions.
//! - This code uses "universes" to handle higher-ranked regions and
//! not the leak-check. This is "more correct" than what rustc does
//! and we are generally migrating in this direction, but NLL had to
//! get there first.
//!
//! Also, this code assumes that there are no bound types at all, not even
//! free ones. This is ok because:
//! - we are not relating anything quantified over some type variable
//! - we will have instantiated all the bound type vars already (the one
//! thing we relate in chalk are basically domain goals and their
//! constituents)
use rustc_data_structures::fx::FxHashMap;
use rustc_middle::traits::ObligationCause;
use rustc_middle::ty::fold::FnMutDelegate;
use rustc_middle::ty::relate::{Relate, RelateResult, TypeRelation};
use rustc_middle::ty::visit::TypeVisitableExt;
use rustc_middle::ty::{self, InferConst, Ty, TyCtxt};
use rustc_span::{Span, Symbol};
use std::fmt::Debug;
use crate::infer::combine::ObligationEmittingRelation;
use crate::infer::generalize::{self, Generalization};
use crate::infer::InferCtxt;
use crate::infer::{TypeVariableOrigin, TypeVariableOriginKind};
use crate::traits::{Obligation, PredicateObligations};
pub struct TypeRelating<'me, 'tcx, D>
where
D: TypeRelatingDelegate<'tcx>,
{
infcx: &'me InferCtxt<'tcx>,
/// Callback to use when we deduce an outlives relationship.
delegate: D,
/// How are we relating `a` and `b`?
///
/// - Covariant means `a <: b`.
/// - Contravariant means `b <: a`.
/// - Invariant means `a == b`.
/// - Bivariant means that it doesn't matter.
ambient_variance: ty::Variance,
ambient_variance_info: ty::VarianceDiagInfo<'tcx>,
}
pub trait TypeRelatingDelegate<'tcx> {
fn param_env(&self) -> ty::ParamEnv<'tcx>;
fn span(&self) -> Span;
/// Push a constraint `sup: sub` -- this constraint must be
/// satisfied for the two types to be related. `sub` and `sup` may
/// be regions from the type or new variables created through the
/// delegate.
fn push_outlives(
&mut self,
sup: ty::Region<'tcx>,
sub: ty::Region<'tcx>,
info: ty::VarianceDiagInfo<'tcx>,
);
fn register_obligations(&mut self, obligations: PredicateObligations<'tcx>);
/// Creates a new universe index. Used when instantiating placeholders.
fn create_next_universe(&mut self) -> ty::UniverseIndex;
/// Creates a new region variable representing a higher-ranked
/// region that is instantiated existentially. This creates an
/// inference variable, typically.
///
/// So e.g., if you have `for<'a> fn(..) <: for<'b> fn(..)`, then
/// we will invoke this method to instantiate `'a` with an
/// inference variable (though `'b` would be instantiated first,
/// as a placeholder).
fn next_existential_region_var(
&mut self,
was_placeholder: bool,
name: Option<Symbol>,
) -> ty::Region<'tcx>;
/// Creates a new region variable representing a
/// higher-ranked region that is instantiated universally.
/// This creates a new region placeholder, typically.
///
/// So e.g., if you have `for<'a> fn(..) <: for<'b> fn(..)`, then
/// we will invoke this method to instantiate `'b` with a
/// placeholder region.
fn next_placeholder_region(&mut self, placeholder: ty::PlaceholderRegion) -> ty::Region<'tcx>;
/// Creates a new existential region in the given universe. This
/// is used when handling subtyping and type variables -- if we
/// have that `?X <: Foo<'a>`, for example, we would instantiate
/// `?X` with a type like `Foo<'?0>` where `'?0` is a fresh
/// existential variable created by this function. We would then
/// relate `Foo<'?0>` with `Foo<'a>` (and probably add an outlives
/// relation stating that `'?0: 'a`).
fn generalize_existential(&mut self, universe: ty::UniverseIndex) -> ty::Region<'tcx>;
/// Enables some optimizations if we do not expect inference variables
/// in the RHS of the relation.
fn forbid_inference_vars() -> bool;
}
#[derive(Copy, Clone)]
struct UniversallyQuantified(bool);
impl<'me, 'tcx, D> TypeRelating<'me, 'tcx, D>
where
D: TypeRelatingDelegate<'tcx>,
{
pub fn new(infcx: &'me InferCtxt<'tcx>, delegate: D, ambient_variance: ty::Variance) -> Self {
Self {
infcx,
delegate,
ambient_variance,
ambient_variance_info: ty::VarianceDiagInfo::default(),
}
}
fn ambient_covariance(&self) -> bool {
match self.ambient_variance {
ty::Variance::Covariant | ty::Variance::Invariant => true,
ty::Variance::Contravariant | ty::Variance::Bivariant => false,
}
}
fn ambient_contravariance(&self) -> bool {
match self.ambient_variance {
ty::Variance::Contravariant | ty::Variance::Invariant => true,
ty::Variance::Covariant | ty::Variance::Bivariant => false,
}
}
/// Push a new outlives requirement into our output set of
/// constraints.
fn push_outlives(
&mut self,
sup: ty::Region<'tcx>,
sub: ty::Region<'tcx>,
info: ty::VarianceDiagInfo<'tcx>,
) {
debug!("push_outlives({:?}: {:?})", sup, sub);
self.delegate.push_outlives(sup, sub, info);
}
/// Relate a type inference variable with a value type. This works
/// by creating a "generalization" G of the value where all the
/// lifetimes are replaced with fresh inference values. This
/// generalization G becomes the value of the inference variable,
/// and is then related in turn to the value. So e.g. if you had
/// `vid = ?0` and `value = &'a u32`, we might first instantiate
/// `?0` to a type like `&'0 u32` where `'0` is a fresh variable,
/// and then relate `&'0 u32` with `&'a u32` (resulting in
/// relations between `'0` and `'a`).
///
/// The variable `pair` can be either a `(vid, ty)` or `(ty, vid)`
/// -- in other words, it is always an (unresolved) inference
/// variable `vid` and a type `ty` that are being related, but the
/// vid may appear either as the "a" type or the "b" type,
/// depending on where it appears in the tuple. The trait
/// `VidValuePair` lets us work with the vid/type while preserving
/// the "sidedness" when necessary -- the sidedness is relevant in
/// particular for the variance and set of in-scope things.
fn relate_ty_var<PAIR: VidValuePair<'tcx>>(
&mut self,
pair: PAIR,
) -> RelateResult<'tcx, Ty<'tcx>> {
debug!("relate_ty_var({:?})", pair);
let vid = pair.vid();
let value_ty = pair.value_ty();
// FIXME(invariance) -- this logic assumes invariance, but that is wrong.
// This only presently applies to chalk integration, as NLL
// doesn't permit type variables to appear on both sides (and
// doesn't use lazy norm).
match *value_ty.kind() {
ty::Infer(ty::TyVar(value_vid)) => {
// Two type variables: just equate them.
self.infcx.inner.borrow_mut().type_variables().equate(vid, value_vid);
return Ok(value_ty);
}
_ => (),
}
let generalized_ty = self.generalize(value_ty, vid)?;
debug!("relate_ty_var: generalized_ty = {:?}", generalized_ty);
if D::forbid_inference_vars() {
// In NLL, we don't have type inference variables
// floating around, so we can do this rather imprecise
// variant of the occurs-check.
assert!(!generalized_ty.has_non_region_infer());
}
self.infcx.inner.borrow_mut().type_variables().instantiate(vid, generalized_ty);
// Relate the generalized kind to the original one.
let result = pair.relate_generalized_ty(self, generalized_ty);
debug!("relate_ty_var: complete, result = {:?}", result);
result
}
fn generalize(&mut self, ty: Ty<'tcx>, for_vid: ty::TyVid) -> RelateResult<'tcx, Ty<'tcx>> {
let Generalization { value: ty, needs_wf: _ } = generalize::generalize(
self.infcx,
&mut self.delegate,
ty,
for_vid,
self.ambient_variance,
)?;
Ok(ty)
}
fn relate_opaques(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
let (a, b) = if self.a_is_expected() { (a, b) } else { (b, a) };
let mut generalize = |ty, ty_is_expected| {
let var = self.infcx.next_ty_var_id_in_universe(
TypeVariableOrigin {
kind: TypeVariableOriginKind::MiscVariable,
span: self.delegate.span(),
},
ty::UniverseIndex::ROOT,
);
if ty_is_expected {
self.relate_ty_var((ty, var))
} else {
self.relate_ty_var((var, ty))
}
};
let (a, b) = match (a.kind(), b.kind()) {
(&ty::Alias(ty::Opaque, ..), _) => (a, generalize(b, false)?),
(_, &ty::Alias(ty::Opaque, ..)) => (generalize(a, true)?, b),
_ => unreachable!(),
};
let cause = ObligationCause::dummy_with_span(self.delegate.span());
let obligations = self
.infcx
.handle_opaque_type(a, b, true, &cause, self.delegate.param_env())?
.obligations;
self.delegate.register_obligations(obligations);
trace!(a = ?a.kind(), b = ?b.kind(), "opaque type instantiated");
Ok(a)
}
#[instrument(skip(self), level = "debug")]
fn instantiate_binder_with_placeholders<T>(&mut self, binder: ty::Binder<'tcx, T>) -> T
where
T: ty::TypeFoldable<TyCtxt<'tcx>> + Copy,
{
if let Some(inner) = binder.no_bound_vars() {
return inner;
}
let mut next_region = {
let nll_delegate = &mut self.delegate;
let mut lazy_universe = None;
move |br: ty::BoundRegion| {
// The first time this closure is called, create a
// new universe for the placeholders we will make
// from here out.
let universe = lazy_universe.unwrap_or_else(|| {
let universe = nll_delegate.create_next_universe();
lazy_universe = Some(universe);
universe
});
let placeholder = ty::PlaceholderRegion { universe, bound: br };
debug!(?placeholder);
let placeholder_reg = nll_delegate.next_placeholder_region(placeholder);
debug!(?placeholder_reg);
placeholder_reg
}
};
let delegate = FnMutDelegate {
regions: &mut next_region,
types: &mut |_bound_ty: ty::BoundTy| {
unreachable!("we only replace regions in nll_relate, not types")
},
consts: &mut |_bound_var: ty::BoundVar, _ty| {
unreachable!("we only replace regions in nll_relate, not consts")
},
};
let replaced = self.infcx.tcx.replace_bound_vars_uncached(binder, delegate);
debug!(?replaced);
replaced
}
#[instrument(skip(self), level = "debug")]
fn instantiate_binder_with_existentials<T>(&mut self, binder: ty::Binder<'tcx, T>) -> T
where
T: ty::TypeFoldable<TyCtxt<'tcx>> + Copy,
{
if let Some(inner) = binder.no_bound_vars() {
return inner;
}
let mut next_region = {
let nll_delegate = &mut self.delegate;
let mut reg_map = FxHashMap::default();
move |br: ty::BoundRegion| {
if let Some(ex_reg_var) = reg_map.get(&br) {
return *ex_reg_var;
} else {
let ex_reg_var =
nll_delegate.next_existential_region_var(true, br.kind.get_name());
debug!(?ex_reg_var);
reg_map.insert(br, ex_reg_var);
ex_reg_var
}
}
};
let delegate = FnMutDelegate {
regions: &mut next_region,
types: &mut |_bound_ty: ty::BoundTy| {
unreachable!("we only replace regions in nll_relate, not types")
},
consts: &mut |_bound_var: ty::BoundVar, _ty| {
unreachable!("we only replace regions in nll_relate, not consts")
},
};
let replaced = self.infcx.tcx.replace_bound_vars_uncached(binder, delegate);
debug!(?replaced);
replaced
}
}
/// When we instantiate an inference variable with a value in
/// `relate_ty_var`, we always have the pair of a `TyVid` and a `Ty`,
/// but the ordering may vary (depending on whether the inference
/// variable was found on the `a` or `b` sides). Therefore, this trait
/// allows us to factor out common code, while preserving the order
/// when needed.
trait VidValuePair<'tcx>: Debug {
/// Extract the inference variable (which could be either the
/// first or second part of the tuple).
fn vid(&self) -> ty::TyVid;
/// Extract the value it is being related to (which will be the
/// opposite part of the tuple from the vid).
fn value_ty(&self) -> Ty<'tcx>;
/// Given a generalized type G that should replace the vid, relate
/// G to the value, putting G on whichever side the vid would have
/// appeared.
fn relate_generalized_ty<D>(
&self,
relate: &mut TypeRelating<'_, 'tcx, D>,
generalized_ty: Ty<'tcx>,
) -> RelateResult<'tcx, Ty<'tcx>>
where
D: TypeRelatingDelegate<'tcx>;
}
impl<'tcx> VidValuePair<'tcx> for (ty::TyVid, Ty<'tcx>) {
fn vid(&self) -> ty::TyVid {
self.0
}
fn value_ty(&self) -> Ty<'tcx> {
self.1
}
fn relate_generalized_ty<D>(
&self,
relate: &mut TypeRelating<'_, 'tcx, D>,
generalized_ty: Ty<'tcx>,
) -> RelateResult<'tcx, Ty<'tcx>>
where
D: TypeRelatingDelegate<'tcx>,
{
relate.relate(generalized_ty, self.value_ty())
}
}
// In this case, the "vid" is the "b" type.
impl<'tcx> VidValuePair<'tcx> for (Ty<'tcx>, ty::TyVid) {
fn vid(&self) -> ty::TyVid {
self.1
}
fn value_ty(&self) -> Ty<'tcx> {
self.0
}
fn relate_generalized_ty<D>(
&self,
relate: &mut TypeRelating<'_, 'tcx, D>,
generalized_ty: Ty<'tcx>,
) -> RelateResult<'tcx, Ty<'tcx>>
where
D: TypeRelatingDelegate<'tcx>,
{
relate.relate(self.value_ty(), generalized_ty)
}
}
impl<'tcx, D> TypeRelation<'tcx> for TypeRelating<'_, 'tcx, D>
where
D: TypeRelatingDelegate<'tcx>,
{
fn tcx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.delegate.param_env()
}
fn tag(&self) -> &'static str {
"nll::subtype"
}
fn a_is_expected(&self) -> bool {
true
}
#[instrument(skip(self, info), level = "trace", ret)]
fn relate_with_variance<T: Relate<'tcx>>(
&mut self,
variance: ty::Variance,
info: ty::VarianceDiagInfo<'tcx>,
a: T,
b: T,
) -> RelateResult<'tcx, T> {
let old_ambient_variance = self.ambient_variance;
self.ambient_variance = self.ambient_variance.xform(variance);
self.ambient_variance_info = self.ambient_variance_info.xform(info);
debug!(?self.ambient_variance);
// In a bivariant context this always succeeds.
let r =
if self.ambient_variance == ty::Variance::Bivariant { a } else { self.relate(a, b)? };
self.ambient_variance = old_ambient_variance;
Ok(r)
}
#[instrument(skip(self), level = "debug")]
fn tys(&mut self, a: Ty<'tcx>, mut b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
let infcx = self.infcx;
let a = self.infcx.shallow_resolve(a);
if !D::forbid_inference_vars() {
b = self.infcx.shallow_resolve(b);
}
if a == b {
return Ok(a);
}
match (a.kind(), b.kind()) {
(_, &ty::Infer(ty::TyVar(vid))) => {
if D::forbid_inference_vars() {
// Forbid inference variables in the RHS.
bug!("unexpected inference var {:?}", b)
} else {
self.relate_ty_var((a, vid))
}
}
(&ty::Infer(ty::TyVar(vid)), _) => self.relate_ty_var((vid, b)),
(
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: a_def_id, .. }),
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, .. }),
) if a_def_id == b_def_id || infcx.next_trait_solver() => {
infcx.super_combine_tys(self, a, b).or_else(|err| {
// This behavior is only there for the old solver, the new solver
// shouldn't ever fail. Instead, it unconditionally emits an
// alias-relate goal.
assert!(!self.infcx.next_trait_solver());
self.tcx().sess.delay_span_bug(
self.delegate.span(),
"failure to relate an opaque to itself should result in an error later on",
);
if a_def_id.is_local() { self.relate_opaques(a, b) } else { Err(err) }
})
}
(&ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }), _)
| (_, &ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }))
if def_id.is_local() && !self.infcx.next_trait_solver() =>
{
self.relate_opaques(a, b)
}
_ => {
debug!(?a, ?b, ?self.ambient_variance);
// Will also handle unification of `IntVar` and `FloatVar`.
self.infcx.super_combine_tys(self, a, b)
}
}
}
#[instrument(skip(self), level = "trace")]
fn regions(
&mut self,
a: ty::Region<'tcx>,
b: ty::Region<'tcx>,
) -> RelateResult<'tcx, ty::Region<'tcx>> {
debug!(?self.ambient_variance);
if self.ambient_covariance() {
// Covariant: &'a u8 <: &'b u8. Hence, `'a: 'b`.
self.push_outlives(a, b, self.ambient_variance_info);
}
if self.ambient_contravariance() {
// Contravariant: &'b u8 <: &'a u8. Hence, `'b: 'a`.
self.push_outlives(b, a, self.ambient_variance_info);
}
Ok(a)
}
fn consts(
&mut self,
a: ty::Const<'tcx>,
mut b: ty::Const<'tcx>,
) -> RelateResult<'tcx, ty::Const<'tcx>> {
let a = self.infcx.shallow_resolve(a);
if !D::forbid_inference_vars() {
b = self.infcx.shallow_resolve(b);
}
match b.kind() {
ty::ConstKind::Infer(InferConst::Var(_)) if D::forbid_inference_vars() => {
// Forbid inference variables in the RHS.
self.infcx.tcx.sess.delay_span_bug(
self.delegate.span(),
format!("unexpected inference var {b:?}",),
);
Ok(a)
}
// FIXME(invariance): see the related FIXME above.
_ => self.infcx.super_combine_consts(self, a, b),
}
}
#[instrument(skip(self), level = "trace")]
fn binders<T>(
&mut self,
a: ty::Binder<'tcx, T>,
b: ty::Binder<'tcx, T>,
) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
where
T: Relate<'tcx>,
{
// We want that
//
// ```
// for<'a> fn(&'a u32) -> &'a u32 <:
// fn(&'b u32) -> &'b u32
// ```
//
// but not
//
// ```
// fn(&'a u32) -> &'a u32 <:
// for<'b> fn(&'b u32) -> &'b u32
// ```
//
// We therefore proceed as follows:
//
// - Instantiate binders on `b` universally, yielding a universe U1.
// - Instantiate binders on `a` existentially in U1.
debug!(?self.ambient_variance);
if let (Some(a), Some(b)) = (a.no_bound_vars(), b.no_bound_vars()) {
// Fast path for the common case.
self.relate(a, b)?;
return Ok(ty::Binder::dummy(a));
}
if self.ambient_covariance() {
// Covariance, so we want `for<..> A <: for<..> B` --
// therefore we compare any instantiation of A (i.e., A
// instantiated with existentials) against every
// instantiation of B (i.e., B instantiated with
// universals).
// Reset the ambient variance to covariant. This is needed
// to correctly handle cases like
//
// for<'a> fn(&'a u32, &'a u32) == for<'b, 'c> fn(&'b u32, &'c u32)
//
// Somewhat surprisingly, these two types are actually
// **equal**, even though the one on the right looks more
// polymorphic. The reason is due to subtyping. To see it,
// consider that each function can call the other:
//
// - The left function can call the right with `'b` and
// `'c` both equal to `'a`
//
// - The right function can call the left with `'a` set to
// `{P}`, where P is the point in the CFG where the call
// itself occurs. Note that `'b` and `'c` must both
// include P. At the point, the call works because of
// subtyping (i.e., `&'b u32 <: &{P} u32`).
let variance = std::mem::replace(&mut self.ambient_variance, ty::Variance::Covariant);
// Note: the order here is important. Create the placeholders first, otherwise
// we assign the wrong universe to the existential!
let b_replaced = self.instantiate_binder_with_placeholders(b);
let a_replaced = self.instantiate_binder_with_existentials(a);
self.relate(a_replaced, b_replaced)?;
self.ambient_variance = variance;
}
if self.ambient_contravariance() {
// Contravariance, so we want `for<..> A :> for<..> B`
// -- therefore we compare every instantiation of A (i.e.,
// A instantiated with universals) against any
// instantiation of B (i.e., B instantiated with
// existentials). Opposite of above.
// Reset ambient variance to contravariance. See the
// covariant case above for an explanation.
let variance =
std::mem::replace(&mut self.ambient_variance, ty::Variance::Contravariant);
let a_replaced = self.instantiate_binder_with_placeholders(a);
let b_replaced = self.instantiate_binder_with_existentials(b);
self.relate(a_replaced, b_replaced)?;
self.ambient_variance = variance;
}
Ok(a)
}
}
impl<'tcx, D> ObligationEmittingRelation<'tcx> for TypeRelating<'_, 'tcx, D>
where
D: TypeRelatingDelegate<'tcx>,
{
fn register_predicates(&mut self, obligations: impl IntoIterator<Item: ty::ToPredicate<'tcx>>) {
self.delegate.register_obligations(
obligations
.into_iter()
.map(|to_pred| {
Obligation::new(self.tcx(), ObligationCause::dummy(), self.param_env(), to_pred)
})
.collect(),
);
}
fn register_obligations(&mut self, obligations: PredicateObligations<'tcx>) {
self.delegate.register_obligations(obligations);
}
fn alias_relate_direction(&self) -> ty::AliasRelationDirection {
unreachable!("manually overridden to handle ty::Variance::Contravariant ambient variance")
}
fn register_type_relate_obligation(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) {
self.register_predicates([ty::Binder::dummy(match self.ambient_variance {
ty::Variance::Covariant => ty::PredicateKind::AliasRelate(
a.into(),
b.into(),
ty::AliasRelationDirection::Subtype,
),
// a :> b is b <: a
ty::Variance::Contravariant => ty::PredicateKind::AliasRelate(
b.into(),
a.into(),
ty::AliasRelationDirection::Subtype,
),
ty::Variance::Invariant => ty::PredicateKind::AliasRelate(
a.into(),
b.into(),
ty::AliasRelationDirection::Equate,
),
// FIXME(deferred_projection_equality): Implement this when we trigger it.
// Probably just need to do nothing here.
ty::Variance::Bivariant => unreachable!(),
})]);
}
}