use crate::ty::{self, InferConst, Ty, TypeFlags};
use crate::ty::{GenericArg, GenericArgKind};
use std::slice;
#[derive(Debug)]
pub struct FlagComputation {
pub flags: TypeFlags,
pub outer_exclusive_binder: ty::DebruijnIndex,
}
impl FlagComputation {
fn new() -> FlagComputation {
FlagComputation { flags: TypeFlags::empty(), outer_exclusive_binder: ty::INNERMOST }
}
#[allow(rustc::usage_of_ty_tykind)]
pub fn for_kind(kind: &ty::TyKind<'_>) -> FlagComputation {
let mut result = FlagComputation::new();
result.add_kind(kind);
result
}
pub fn for_predicate(binder: ty::Binder<'_, ty::PredicateKind<'_>>) -> FlagComputation {
let mut result = FlagComputation::new();
result.add_predicate(binder);
result
}
pub fn for_const(c: ty::Const<'_>) -> TypeFlags {
let mut result = FlagComputation::new();
result.add_const(c);
result.flags
}
pub fn bound_var_flags(vars: &ty::List<ty::BoundVariableKind>) -> FlagComputation {
let mut computation = FlagComputation::new();
for bv in vars {
match bv {
ty::BoundVariableKind::Ty(_) => {
computation.flags |= TypeFlags::HAS_TY_LATE_BOUND;
}
ty::BoundVariableKind::Region(_) => {
computation.flags |= TypeFlags::HAS_RE_LATE_BOUND;
}
ty::BoundVariableKind::Const => {
computation.flags |= TypeFlags::HAS_CT_LATE_BOUND;
}
}
}
computation
}
fn add_flags(&mut self, flags: TypeFlags) {
self.flags = self.flags | flags;
}
fn add_bound_var(&mut self, binder: ty::DebruijnIndex) {
let exclusive_binder = binder.shifted_in(1);
self.add_exclusive_binder(exclusive_binder);
}
fn add_exclusive_binder(&mut self, exclusive_binder: ty::DebruijnIndex) {
self.outer_exclusive_binder = self.outer_exclusive_binder.max(exclusive_binder);
}
fn bound_computation<T, F>(&mut self, value: ty::Binder<'_, T>, f: F)
where
F: FnOnce(&mut Self, T),
{
let mut computation = FlagComputation::bound_var_flags(value.bound_vars());
f(&mut computation, value.skip_binder());
self.add_flags(computation.flags);
let outer_exclusive_binder = computation.outer_exclusive_binder;
if outer_exclusive_binder > ty::INNERMOST {
self.add_exclusive_binder(outer_exclusive_binder.shifted_out(1));
} }
#[allow(rustc::usage_of_ty_tykind)]
fn add_kind(&mut self, kind: &ty::TyKind<'_>) {
match kind {
&ty::Bool
| &ty::Char
| &ty::Int(_)
| &ty::Float(_)
| &ty::Uint(_)
| &ty::Never
| &ty::Str
| &ty::Foreign(..) => {}
&ty::Error(_) => self.add_flags(TypeFlags::HAS_ERROR),
&ty::Param(_) => {
self.add_flags(TypeFlags::HAS_TY_PARAM);
self.add_flags(TypeFlags::STILL_FURTHER_SPECIALIZABLE);
}
ty::Generator(_, args, _) => {
let args = args.as_generator();
let should_remove_further_specializable =
!self.flags.contains(TypeFlags::STILL_FURTHER_SPECIALIZABLE);
self.add_args(args.parent_args());
if should_remove_further_specializable {
self.flags -= TypeFlags::STILL_FURTHER_SPECIALIZABLE;
}
self.add_ty(args.resume_ty());
self.add_ty(args.return_ty());
self.add_ty(args.witness());
self.add_ty(args.yield_ty());
self.add_ty(args.tupled_upvars_ty());
}
ty::GeneratorWitness(_, args) => {
let should_remove_further_specializable =
!self.flags.contains(TypeFlags::STILL_FURTHER_SPECIALIZABLE);
self.add_args(args);
if should_remove_further_specializable {
self.flags -= TypeFlags::STILL_FURTHER_SPECIALIZABLE;
}
self.add_flags(TypeFlags::HAS_TY_GENERATOR);
}
&ty::Closure(_, args) => {
let args = args.as_closure();
let should_remove_further_specializable =
!self.flags.contains(TypeFlags::STILL_FURTHER_SPECIALIZABLE);
self.add_args(args.parent_args());
if should_remove_further_specializable {
self.flags -= TypeFlags::STILL_FURTHER_SPECIALIZABLE;
}
self.add_ty(args.sig_as_fn_ptr_ty());
self.add_ty(args.kind_ty());
self.add_ty(args.tupled_upvars_ty());
}
&ty::Bound(debruijn, _) => {
self.add_bound_var(debruijn);
self.add_flags(TypeFlags::HAS_TY_LATE_BOUND);
}
&ty::Placeholder(..) => {
self.add_flags(TypeFlags::HAS_TY_PLACEHOLDER);
self.add_flags(TypeFlags::STILL_FURTHER_SPECIALIZABLE);
}
&ty::Infer(infer) => {
self.add_flags(TypeFlags::STILL_FURTHER_SPECIALIZABLE);
match infer {
ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => {
self.add_flags(TypeFlags::HAS_TY_FRESH)
}
ty::TyVar(_) | ty::IntVar(_) | ty::FloatVar(_) => {
self.add_flags(TypeFlags::HAS_TY_INFER)
}
}
}
&ty::Adt(_, args) => {
self.add_args(args);
}
&ty::Alias(kind, data) => {
self.add_flags(match kind {
ty::Weak | ty::Projection => TypeFlags::HAS_TY_PROJECTION,
ty::Inherent => TypeFlags::HAS_TY_INHERENT,
ty::Opaque => TypeFlags::HAS_TY_OPAQUE,
});
self.add_alias_ty(data);
}
&ty::Dynamic(obj, r, _) => {
for predicate in obj.iter() {
self.bound_computation(predicate, |computation, predicate| match predicate {
ty::ExistentialPredicate::Trait(tr) => computation.add_args(tr.args),
ty::ExistentialPredicate::Projection(p) => {
computation.add_existential_projection(&p);
}
ty::ExistentialPredicate::AutoTrait(_) => {}
});
}
self.add_region(r);
}
&ty::Array(tt, len) => {
self.add_ty(tt);
self.add_const(len);
}
&ty::Slice(tt) => self.add_ty(tt),
ty::RawPtr(m) => {
self.add_ty(m.ty);
}
&ty::Ref(r, ty, _) => {
self.add_region(r);
self.add_ty(ty);
}
&ty::Tuple(types) => {
self.add_tys(types);
}
&ty::FnDef(_, args) => {
self.add_args(args);
}
&ty::FnPtr(fn_sig) => self.bound_computation(fn_sig, |computation, fn_sig| {
computation.add_tys(fn_sig.inputs());
computation.add_ty(fn_sig.output());
}),
}
}
fn add_predicate(&mut self, binder: ty::Binder<'_, ty::PredicateKind<'_>>) {
self.bound_computation(binder, |computation, atom| computation.add_predicate_atom(atom));
}
fn add_predicate_atom(&mut self, atom: ty::PredicateKind<'_>) {
match atom {
ty::PredicateKind::Clause(ty::ClauseKind::Trait(trait_pred)) => {
self.add_args(trait_pred.trait_ref.args);
}
ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(
a,
b,
))) => {
self.add_region(a);
self.add_region(b);
}
ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(
ty,
region,
))) => {
self.add_ty(ty);
self.add_region(region);
}
ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(ct, ty)) => {
self.add_const(ct);
self.add_ty(ty);
}
ty::PredicateKind::Subtype(ty::SubtypePredicate { a_is_expected: _, a, b }) => {
self.add_ty(a);
self.add_ty(b);
}
ty::PredicateKind::Coerce(ty::CoercePredicate { a, b }) => {
self.add_ty(a);
self.add_ty(b);
}
ty::PredicateKind::Clause(ty::ClauseKind::Projection(ty::ProjectionPredicate {
projection_ty,
term,
})) => {
self.add_alias_ty(projection_ty);
self.add_term(term);
}
ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
self.add_args(slice::from_ref(&arg));
}
ty::PredicateKind::ObjectSafe(_def_id) => {}
ty::PredicateKind::ClosureKind(_def_id, args, _kind) => {
self.add_args(args);
}
ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(uv)) => {
self.add_const(uv);
}
ty::PredicateKind::ConstEquate(expected, found) => {
self.add_const(expected);
self.add_const(found);
}
ty::PredicateKind::Ambiguous => {}
ty::PredicateKind::AliasRelate(t1, t2, _) => {
self.add_term(t1);
self.add_term(t2);
}
}
}
fn add_ty(&mut self, ty: Ty<'_>) {
self.add_flags(ty.flags());
self.add_exclusive_binder(ty.outer_exclusive_binder());
}
fn add_tys(&mut self, tys: &[Ty<'_>]) {
for &ty in tys {
self.add_ty(ty);
}
}
fn add_region(&mut self, r: ty::Region<'_>) {
self.add_flags(r.type_flags());
if let ty::ReLateBound(debruijn, _) = *r {
self.add_bound_var(debruijn);
}
}
fn add_const(&mut self, c: ty::Const<'_>) {
self.add_ty(c.ty());
match c.kind() {
ty::ConstKind::Unevaluated(uv) => {
self.add_args(uv.args);
self.add_flags(TypeFlags::HAS_CT_PROJECTION);
}
ty::ConstKind::Infer(infer) => {
self.add_flags(TypeFlags::STILL_FURTHER_SPECIALIZABLE);
match infer {
InferConst::Fresh(_) => self.add_flags(TypeFlags::HAS_CT_FRESH),
InferConst::Var(_) | InferConst::EffectVar(_) => {
self.add_flags(TypeFlags::HAS_CT_INFER)
}
}
}
ty::ConstKind::Bound(debruijn, _) => {
self.add_bound_var(debruijn);
self.add_flags(TypeFlags::HAS_CT_LATE_BOUND);
}
ty::ConstKind::Param(_) => {
self.add_flags(TypeFlags::HAS_CT_PARAM);
self.add_flags(TypeFlags::STILL_FURTHER_SPECIALIZABLE);
}
ty::ConstKind::Placeholder(_) => {
self.add_flags(TypeFlags::HAS_CT_PLACEHOLDER);
self.add_flags(TypeFlags::STILL_FURTHER_SPECIALIZABLE);
}
ty::ConstKind::Value(_) => {}
ty::ConstKind::Expr(e) => {
use ty::Expr;
match e {
Expr::Binop(_, l, r) => {
self.add_const(l);
self.add_const(r);
}
Expr::UnOp(_, v) => self.add_const(v),
Expr::FunctionCall(f, args) => {
self.add_const(f);
for arg in args {
self.add_const(arg);
}
}
Expr::Cast(_, c, t) => {
self.add_ty(t);
self.add_const(c);
}
}
}
ty::ConstKind::Error(_) => self.add_flags(TypeFlags::HAS_ERROR),
}
}
fn add_existential_projection(&mut self, projection: &ty::ExistentialProjection<'_>) {
self.add_args(projection.args);
match projection.term.unpack() {
ty::TermKind::Ty(ty) => self.add_ty(ty),
ty::TermKind::Const(ct) => self.add_const(ct),
}
}
fn add_alias_ty(&mut self, alias_ty: ty::AliasTy<'_>) {
self.add_args(alias_ty.args);
}
fn add_args(&mut self, args: &[GenericArg<'_>]) {
for kind in args {
match kind.unpack() {
GenericArgKind::Type(ty) => self.add_ty(ty),
GenericArgKind::Lifetime(lt) => self.add_region(lt),
GenericArgKind::Const(ct) => self.add_const(ct),
}
}
}
fn add_term(&mut self, term: ty::Term<'_>) {
match term.unpack() {
ty::TermKind::Ty(ty) => self.add_ty(ty),
ty::TermKind::Const(ct) => self.add_const(ct),
}
}
}