1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
use super::graph::{BasicCoverageBlock, BasicCoverageBlockData, CoverageGraph, START_BCB};

use rustc_data_structures::graph::WithNumNodes;
use rustc_index::IndexVec;
use rustc_middle::mir::{
    self, AggregateKind, BasicBlock, FakeReadCause, Rvalue, Statement, StatementKind, Terminator,
    TerminatorKind,
};
use rustc_span::source_map::original_sp;
use rustc_span::{BytePos, ExpnKind, MacroKind, Span, Symbol};

use std::cell::OnceCell;

pub(super) struct CoverageSpans {
    /// Map from BCBs to their list of coverage spans.
    bcb_to_spans: IndexVec<BasicCoverageBlock, Vec<Span>>,
}

impl CoverageSpans {
    pub(super) fn generate_coverage_spans(
        mir_body: &mir::Body<'_>,
        fn_sig_span: Span,
        body_span: Span,
        basic_coverage_blocks: &CoverageGraph,
    ) -> Self {
        let coverage_spans = CoverageSpansGenerator::generate_coverage_spans(
            mir_body,
            fn_sig_span,
            body_span,
            basic_coverage_blocks,
        );

        // Group the coverage spans by BCB, with the BCBs in sorted order.
        let mut bcb_to_spans = IndexVec::from_elem_n(Vec::new(), basic_coverage_blocks.num_nodes());
        for CoverageSpan { bcb, span, .. } in coverage_spans {
            bcb_to_spans[bcb].push(span);
        }

        Self { bcb_to_spans }
    }

    pub(super) fn bcb_has_coverage_spans(&self, bcb: BasicCoverageBlock) -> bool {
        !self.bcb_to_spans[bcb].is_empty()
    }

    pub(super) fn bcbs_with_coverage_spans(
        &self,
    ) -> impl Iterator<Item = (BasicCoverageBlock, &[Span])> {
        self.bcb_to_spans.iter_enumerated().filter_map(|(bcb, spans)| {
            // Only yield BCBs that have at least one coverage span.
            (!spans.is_empty()).then_some((bcb, spans.as_slice()))
        })
    }
}

#[derive(Debug, Copy, Clone)]
pub(super) enum CoverageStatement {
    Statement(BasicBlock, Span, usize),
    Terminator(BasicBlock, Span),
}

impl CoverageStatement {
    pub fn span(&self) -> Span {
        match self {
            Self::Statement(_, span, _) | Self::Terminator(_, span) => *span,
        }
    }
}

/// A BCB is deconstructed into one or more `Span`s. Each `Span` maps to a `CoverageSpan` that
/// references the originating BCB and one or more MIR `Statement`s and/or `Terminator`s.
/// Initially, the `Span`s come from the `Statement`s and `Terminator`s, but subsequent
/// transforms can combine adjacent `Span`s and `CoverageSpan` from the same BCB, merging the
/// `CoverageStatement` vectors, and the `Span`s to cover the extent of the combined `Span`s.
///
/// Note: A `CoverageStatement` merged into another CoverageSpan may come from a `BasicBlock` that
/// is not part of the `CoverageSpan` bcb if the statement was included because it's `Span` matches
/// or is subsumed by the `Span` associated with this `CoverageSpan`, and it's `BasicBlock`
/// `dominates()` the `BasicBlock`s in this `CoverageSpan`.
#[derive(Debug, Clone)]
struct CoverageSpan {
    pub span: Span,
    pub expn_span: Span,
    pub current_macro_or_none: OnceCell<Option<Symbol>>,
    pub bcb: BasicCoverageBlock,
    pub coverage_statements: Vec<CoverageStatement>,
    pub is_closure: bool,
}

impl CoverageSpan {
    pub fn for_fn_sig(fn_sig_span: Span) -> Self {
        Self {
            span: fn_sig_span,
            expn_span: fn_sig_span,
            current_macro_or_none: Default::default(),
            bcb: START_BCB,
            coverage_statements: vec![],
            is_closure: false,
        }
    }

    pub fn for_statement(
        statement: &Statement<'_>,
        span: Span,
        expn_span: Span,
        bcb: BasicCoverageBlock,
        bb: BasicBlock,
        stmt_index: usize,
    ) -> Self {
        let is_closure = match statement.kind {
            StatementKind::Assign(box (_, Rvalue::Aggregate(box ref kind, _))) => {
                matches!(kind, AggregateKind::Closure(_, _) | AggregateKind::Generator(_, _, _))
            }
            _ => false,
        };

        Self {
            span,
            expn_span,
            current_macro_or_none: Default::default(),
            bcb,
            coverage_statements: vec![CoverageStatement::Statement(bb, span, stmt_index)],
            is_closure,
        }
    }

    pub fn for_terminator(
        span: Span,
        expn_span: Span,
        bcb: BasicCoverageBlock,
        bb: BasicBlock,
    ) -> Self {
        Self {
            span,
            expn_span,
            current_macro_or_none: Default::default(),
            bcb,
            coverage_statements: vec![CoverageStatement::Terminator(bb, span)],
            is_closure: false,
        }
    }

    pub fn merge_from(&mut self, mut other: CoverageSpan) {
        debug_assert!(self.is_mergeable(&other));
        self.span = self.span.to(other.span);
        self.coverage_statements.append(&mut other.coverage_statements);
    }

    pub fn cutoff_statements_at(&mut self, cutoff_pos: BytePos) {
        self.coverage_statements.retain(|covstmt| covstmt.span().hi() <= cutoff_pos);
        if let Some(highest_covstmt) =
            self.coverage_statements.iter().max_by_key(|covstmt| covstmt.span().hi())
        {
            self.span = self.span.with_hi(highest_covstmt.span().hi());
        }
    }

    #[inline]
    pub fn is_mergeable(&self, other: &Self) -> bool {
        self.is_in_same_bcb(other) && !(self.is_closure || other.is_closure)
    }

    #[inline]
    pub fn is_in_same_bcb(&self, other: &Self) -> bool {
        self.bcb == other.bcb
    }

    /// If the span is part of a macro, returns the macro name symbol.
    pub fn current_macro(&self) -> Option<Symbol> {
        self.current_macro_or_none
            .get_or_init(|| {
                if let ExpnKind::Macro(MacroKind::Bang, current_macro) =
                    self.expn_span.ctxt().outer_expn_data().kind
                {
                    return Some(current_macro);
                }
                None
            })
            .map(|symbol| symbol)
    }

    /// If the span is part of a macro, and the macro is visible (expands directly to the given
    /// body_span), returns the macro name symbol.
    pub fn visible_macro(&self, body_span: Span) -> Option<Symbol> {
        if let Some(current_macro) = self.current_macro() && self
            .expn_span
            .parent_callsite()
            .unwrap_or_else(|| bug!("macro must have a parent"))
            .eq_ctxt(body_span)
        {
            return Some(current_macro);
        }
        None
    }

    pub fn is_macro_expansion(&self) -> bool {
        self.current_macro().is_some()
    }
}

/// Converts the initial set of `CoverageSpan`s (one per MIR `Statement` or `Terminator`) into a
/// minimal set of `CoverageSpan`s, using the BCB CFG to determine where it is safe and useful to:
///
///  * Remove duplicate source code coverage regions
///  * Merge spans that represent continuous (both in source code and control flow), non-branching
///    execution
///  * Carve out (leave uncovered) any span that will be counted by another MIR (notably, closures)
struct CoverageSpansGenerator<'a, 'tcx> {
    /// The MIR, used to look up `BasicBlockData`.
    mir_body: &'a mir::Body<'tcx>,

    /// A `Span` covering the signature of function for the MIR.
    fn_sig_span: Span,

    /// A `Span` covering the function body of the MIR (typically from left curly brace to right
    /// curly brace).
    body_span: Span,

    /// The BasicCoverageBlock Control Flow Graph (BCB CFG).
    basic_coverage_blocks: &'a CoverageGraph,

    /// The initial set of `CoverageSpan`s, sorted by `Span` (`lo` and `hi`) and by relative
    /// dominance between the `BasicCoverageBlock`s of equal `Span`s.
    sorted_spans_iter: Option<std::vec::IntoIter<CoverageSpan>>,

    /// The current `CoverageSpan` to compare to its `prev`, to possibly merge, discard, force the
    /// discard of the `prev` (and or `pending_dups`), or keep both (with `prev` moved to
    /// `pending_dups`). If `curr` is not discarded or merged, it becomes `prev` for the next
    /// iteration.
    some_curr: Option<CoverageSpan>,

    /// The original `span` for `curr`, in case `curr.span()` is modified. The `curr_original_span`
    /// **must not be mutated** (except when advancing to the next `curr`), even if `curr.span()`
    /// is mutated.
    curr_original_span: Span,

    /// The CoverageSpan from a prior iteration; typically assigned from that iteration's `curr`.
    /// If that `curr` was discarded, `prev` retains its value from the previous iteration.
    some_prev: Option<CoverageSpan>,

    /// Assigned from `curr_original_span` from the previous iteration. The `prev_original_span`
    /// **must not be mutated** (except when advancing to the next `prev`), even if `prev.span()`
    /// is mutated.
    prev_original_span: Span,

    /// A copy of the expn_span from the prior iteration.
    prev_expn_span: Option<Span>,

    /// One or more `CoverageSpan`s with the same `Span` but different `BasicCoverageBlock`s, and
    /// no `BasicCoverageBlock` in this list dominates another `BasicCoverageBlock` in the list.
    /// If a new `curr` span also fits this criteria (compared to an existing list of
    /// `pending_dups`), that `curr` `CoverageSpan` moves to `prev` before possibly being added to
    /// the `pending_dups` list, on the next iteration. As a result, if `prev` and `pending_dups`
    /// have the same `Span`, the criteria for `pending_dups` holds for `prev` as well: a `prev`
    /// with a matching `Span` does not dominate any `pending_dup` and no `pending_dup` dominates a
    /// `prev` with a matching `Span`)
    pending_dups: Vec<CoverageSpan>,

    /// The final `CoverageSpan`s to add to the coverage map. A `Counter` or `Expression`
    /// will also be injected into the MIR for each `CoverageSpan`.
    refined_spans: Vec<CoverageSpan>,
}

impl<'a, 'tcx> CoverageSpansGenerator<'a, 'tcx> {
    /// Generate a minimal set of `CoverageSpan`s, each representing a contiguous code region to be
    /// counted.
    ///
    /// The basic steps are:
    ///
    /// 1. Extract an initial set of spans from the `Statement`s and `Terminator`s of each
    ///    `BasicCoverageBlockData`.
    /// 2. Sort the spans by span.lo() (starting position). Spans that start at the same position
    ///    are sorted with longer spans before shorter spans; and equal spans are sorted
    ///    (deterministically) based on "dominator" relationship (if any).
    /// 3. Traverse the spans in sorted order to identify spans that can be dropped (for instance,
    ///    if another span or spans are already counting the same code region), or should be merged
    ///    into a broader combined span (because it represents a contiguous, non-branching, and
    ///    uninterrupted region of source code).
    ///
    ///    Closures are exposed in their enclosing functions as `Assign` `Rvalue`s, and since
    ///    closures have their own MIR, their `Span` in their enclosing function should be left
    ///    "uncovered".
    ///
    /// Note the resulting vector of `CoverageSpan`s may not be fully sorted (and does not need
    /// to be).
    pub(super) fn generate_coverage_spans(
        mir_body: &'a mir::Body<'tcx>,
        fn_sig_span: Span, // Ensured to be same SourceFile and SyntaxContext as `body_span`
        body_span: Span,
        basic_coverage_blocks: &'a CoverageGraph,
    ) -> Vec<CoverageSpan> {
        let mut coverage_spans = Self {
            mir_body,
            fn_sig_span,
            body_span,
            basic_coverage_blocks,
            sorted_spans_iter: None,
            refined_spans: Vec::with_capacity(basic_coverage_blocks.num_nodes() * 2),
            some_curr: None,
            curr_original_span: Span::with_root_ctxt(BytePos(0), BytePos(0)),
            some_prev: None,
            prev_original_span: Span::with_root_ctxt(BytePos(0), BytePos(0)),
            prev_expn_span: None,
            pending_dups: Vec::new(),
        };

        let sorted_spans = coverage_spans.mir_to_initial_sorted_coverage_spans();

        coverage_spans.sorted_spans_iter = Some(sorted_spans.into_iter());

        coverage_spans.to_refined_spans()
    }

    fn mir_to_initial_sorted_coverage_spans(&self) -> Vec<CoverageSpan> {
        let mut initial_spans =
            Vec::<CoverageSpan>::with_capacity(self.mir_body.basic_blocks.len() * 2);
        for (bcb, bcb_data) in self.basic_coverage_blocks.iter_enumerated() {
            initial_spans.extend(self.bcb_to_initial_coverage_spans(bcb, bcb_data));
        }

        if initial_spans.is_empty() {
            // This can happen if, for example, the function is unreachable (contains only a
            // `BasicBlock`(s) with an `Unreachable` terminator).
            return initial_spans;
        }

        initial_spans.push(CoverageSpan::for_fn_sig(self.fn_sig_span));

        initial_spans.sort_by(|a, b| {
            // First sort by span start.
            Ord::cmp(&a.span.lo(), &b.span.lo())
                // If span starts are the same, sort by span end in reverse order.
                // This ensures that if spans A and B are adjacent in the list,
                // and they overlap but are not equal, then either:
                // - Span A extends further left, or
                // - Both have the same start and span A extends further right
                .then_with(|| Ord::cmp(&a.span.hi(), &b.span.hi()).reverse())
                // If both spans are equal, sort the BCBs in dominator order,
                // so that dominating BCBs come before other BCBs they dominate.
                .then_with(|| self.basic_coverage_blocks.cmp_in_dominator_order(a.bcb, b.bcb))
                // If two spans are otherwise identical, put closure spans first,
                // as this seems to be what the refinement step expects.
                .then_with(|| Ord::cmp(&a.is_closure, &b.is_closure).reverse())
        });

        initial_spans
    }

    /// Iterate through the sorted `CoverageSpan`s, and return the refined list of merged and
    /// de-duplicated `CoverageSpan`s.
    fn to_refined_spans(mut self) -> Vec<CoverageSpan> {
        while self.next_coverage_span() {
            if self.some_prev.is_none() {
                debug!("  initial span");
                self.check_invoked_macro_name_span();
            } else if self.curr().is_mergeable(self.prev()) {
                debug!("  same bcb (and neither is a closure), merge with prev={:?}", self.prev());
                let prev = self.take_prev();
                self.curr_mut().merge_from(prev);
                self.check_invoked_macro_name_span();
            // Note that curr.span may now differ from curr_original_span
            } else if self.prev_ends_before_curr() {
                debug!(
                    "  different bcbs and disjoint spans, so keep curr for next iter, and add \
                    prev={:?}",
                    self.prev()
                );
                let prev = self.take_prev();
                self.push_refined_span(prev);
                self.check_invoked_macro_name_span();
            } else if self.prev().is_closure {
                // drop any equal or overlapping span (`curr`) and keep `prev` to test again in the
                // next iter
                debug!(
                    "  curr overlaps a closure (prev). Drop curr and keep prev for next iter. \
                    prev={:?}",
                    self.prev()
                );
                self.take_curr();
            } else if self.curr().is_closure {
                self.carve_out_span_for_closure();
            } else if self.prev_original_span == self.curr().span {
                // Note that this compares the new (`curr`) span to `prev_original_span`.
                // In this branch, the actual span byte range of `prev_original_span` is not
                // important. What is important is knowing whether the new `curr` span was
                // **originally** the same as the original span of `prev()`. The original spans
                // reflect their original sort order, and for equal spans, conveys a partial
                // ordering based on CFG dominator priority.
                if self.prev().is_macro_expansion() && self.curr().is_macro_expansion() {
                    // Macros that expand to include branching (such as
                    // `assert_eq!()`, `assert_ne!()`, `info!()`, `debug!()`, or
                    // `trace!()`) typically generate callee spans with identical
                    // ranges (typically the full span of the macro) for all
                    // `BasicBlocks`. This makes it impossible to distinguish
                    // the condition (`if val1 != val2`) from the optional
                    // branched statements (such as the call to `panic!()` on
                    // assert failure). In this case it is better (or less
                    // worse) to drop the optional branch bcbs and keep the
                    // non-conditional statements, to count when reached.
                    debug!(
                        "  curr and prev are part of a macro expansion, and curr has the same span \
                        as prev, but is in a different bcb. Drop curr and keep prev for next iter. \
                        prev={:?}",
                        self.prev()
                    );
                    self.take_curr();
                } else {
                    self.hold_pending_dups_unless_dominated();
                }
            } else {
                self.cutoff_prev_at_overlapping_curr();
                self.check_invoked_macro_name_span();
            }
        }

        debug!("    AT END, adding last prev={:?}", self.prev());
        let prev = self.take_prev();
        let pending_dups = self.pending_dups.split_off(0);
        for dup in pending_dups {
            debug!("    ...adding at least one pending dup={:?}", dup);
            self.push_refined_span(dup);
        }

        // Async functions wrap a closure that implements the body to be executed. The enclosing
        // function is called and returns an `impl Future` without initially executing any of the
        // body. To avoid showing the return from the enclosing function as a "covered" return from
        // the closure, the enclosing function's `TerminatorKind::Return`s `CoverageSpan` is
        // excluded. The closure's `Return` is the only one that will be counted. This provides
        // adequate coverage, and more intuitive counts. (Avoids double-counting the closing brace
        // of the function body.)
        let body_ends_with_closure = if let Some(last_covspan) = self.refined_spans.last() {
            last_covspan.is_closure && last_covspan.span.hi() == self.body_span.hi()
        } else {
            false
        };

        if !body_ends_with_closure {
            self.push_refined_span(prev);
        }

        // Remove `CoverageSpan`s derived from closures, originally added to ensure the coverage
        // regions for the current function leave room for the closure's own coverage regions
        // (injected separately, from the closure's own MIR).
        self.refined_spans.retain(|covspan| !covspan.is_closure);
        self.refined_spans
    }

    fn push_refined_span(&mut self, covspan: CoverageSpan) {
        let len = self.refined_spans.len();
        if len > 0 {
            let last = &mut self.refined_spans[len - 1];
            if last.is_mergeable(&covspan) {
                debug!(
                    "merging new refined span with last refined span, last={:?}, covspan={:?}",
                    last, covspan
                );
                last.merge_from(covspan);
                return;
            }
        }
        self.refined_spans.push(covspan)
    }

    fn check_invoked_macro_name_span(&mut self) {
        if let Some(visible_macro) = self.curr().visible_macro(self.body_span) {
            if !self
                .prev_expn_span
                .is_some_and(|prev_expn_span| self.curr().expn_span.ctxt() == prev_expn_span.ctxt())
            {
                let merged_prefix_len = self.curr_original_span.lo() - self.curr().span.lo();
                let after_macro_bang =
                    merged_prefix_len + BytePos(visible_macro.as_str().len() as u32 + 1);
                let mut macro_name_cov = self.curr().clone();
                self.curr_mut().span =
                    self.curr().span.with_lo(self.curr().span.lo() + after_macro_bang);
                macro_name_cov.span =
                    macro_name_cov.span.with_hi(macro_name_cov.span.lo() + after_macro_bang);
                debug!(
                    "  and curr starts a new macro expansion, so add a new span just for \
                            the macro `{}!`, new span={:?}",
                    visible_macro, macro_name_cov
                );
                self.push_refined_span(macro_name_cov);
            }
        }
    }

    // Generate a set of `CoverageSpan`s from the filtered set of `Statement`s and `Terminator`s of
    // the `BasicBlock`(s) in the given `BasicCoverageBlockData`. One `CoverageSpan` is generated
    // for each `Statement` and `Terminator`. (Note that subsequent stages of coverage analysis will
    // merge some `CoverageSpan`s, at which point a `CoverageSpan` may represent multiple
    // `Statement`s and/or `Terminator`s.)
    fn bcb_to_initial_coverage_spans(
        &self,
        bcb: BasicCoverageBlock,
        bcb_data: &'a BasicCoverageBlockData,
    ) -> Vec<CoverageSpan> {
        bcb_data
            .basic_blocks
            .iter()
            .flat_map(|&bb| {
                let data = &self.mir_body[bb];
                data.statements
                    .iter()
                    .enumerate()
                    .filter_map(move |(index, statement)| {
                        filtered_statement_span(statement).map(|span| {
                            CoverageSpan::for_statement(
                                statement,
                                function_source_span(span, self.body_span),
                                span,
                                bcb,
                                bb,
                                index,
                            )
                        })
                    })
                    .chain(filtered_terminator_span(data.terminator()).map(|span| {
                        CoverageSpan::for_terminator(
                            function_source_span(span, self.body_span),
                            span,
                            bcb,
                            bb,
                        )
                    }))
            })
            .collect()
    }

    fn curr(&self) -> &CoverageSpan {
        self.some_curr
            .as_ref()
            .unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_curr"))
    }

    fn curr_mut(&mut self) -> &mut CoverageSpan {
        self.some_curr
            .as_mut()
            .unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_curr"))
    }

    fn prev(&self) -> &CoverageSpan {
        self.some_prev
            .as_ref()
            .unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_prev"))
    }

    fn prev_mut(&mut self) -> &mut CoverageSpan {
        self.some_prev
            .as_mut()
            .unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_prev"))
    }

    fn take_prev(&mut self) -> CoverageSpan {
        self.some_prev.take().unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_prev"))
    }

    /// If there are `pending_dups` but `prev` is not a matching dup (`prev.span` doesn't match the
    /// `pending_dups` spans), then one of the following two things happened during the previous
    /// iteration:
    ///   * the previous `curr` span (which is now `prev`) was not a duplicate of the pending_dups
    ///     (in which case there should be at least two spans in `pending_dups`); or
    ///   * the `span` of `prev` was modified by `curr_mut().merge_from(prev)` (in which case
    ///     `pending_dups` could have as few as one span)
    /// In either case, no more spans will match the span of `pending_dups`, so
    /// add the `pending_dups` if they don't overlap `curr`, and clear the list.
    fn check_pending_dups(&mut self) {
        if let Some(dup) = self.pending_dups.last() && dup.span != self.prev().span {
            debug!(
                "    SAME spans, but pending_dups are NOT THE SAME, so BCBs matched on \
                previous iteration, or prev started a new disjoint span"
            );
            if dup.span.hi() <= self.curr().span.lo() {
                let pending_dups = self.pending_dups.split_off(0);
                for dup in pending_dups.into_iter() {
                    debug!("    ...adding at least one pending={:?}", dup);
                    self.push_refined_span(dup);
                }
            } else {
                self.pending_dups.clear();
            }
        }
    }

    /// Advance `prev` to `curr` (if any), and `curr` to the next `CoverageSpan` in sorted order.
    fn next_coverage_span(&mut self) -> bool {
        if let Some(curr) = self.some_curr.take() {
            self.prev_expn_span = Some(curr.expn_span);
            self.some_prev = Some(curr);
            self.prev_original_span = self.curr_original_span;
        }
        while let Some(curr) = self.sorted_spans_iter.as_mut().unwrap().next() {
            debug!("FOR curr={:?}", curr);
            if self.some_prev.is_some() && self.prev_starts_after_next(&curr) {
                debug!(
                    "  prev.span starts after curr.span, so curr will be dropped (skipping past \
                    closure?); prev={:?}",
                    self.prev()
                );
            } else {
                // Save a copy of the original span for `curr` in case the `CoverageSpan` is changed
                // by `self.curr_mut().merge_from(prev)`.
                self.curr_original_span = curr.span;
                self.some_curr.replace(curr);
                self.check_pending_dups();
                return true;
            }
        }
        false
    }

    /// If called, then the next call to `next_coverage_span()` will *not* update `prev` with the
    /// `curr` coverage span.
    fn take_curr(&mut self) -> CoverageSpan {
        self.some_curr.take().unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_curr"))
    }

    /// Returns true if the curr span should be skipped because prev has already advanced beyond the
    /// end of curr. This can only happen if a prior iteration updated `prev` to skip past a region
    /// of code, such as skipping past a closure.
    fn prev_starts_after_next(&self, next_curr: &CoverageSpan) -> bool {
        self.prev().span.lo() > next_curr.span.lo()
    }

    /// Returns true if the curr span starts past the end of the prev span, which means they don't
    /// overlap, so we now know the prev can be added to the refined coverage spans.
    fn prev_ends_before_curr(&self) -> bool {
        self.prev().span.hi() <= self.curr().span.lo()
    }

    /// If `prev`s span extends left of the closure (`curr`), carve out the closure's span from
    /// `prev`'s span. (The closure's coverage counters will be injected when processing the
    /// closure's own MIR.) Add the portion of the span to the left of the closure; and if the span
    /// extends to the right of the closure, update `prev` to that portion of the span. For any
    /// `pending_dups`, repeat the same process.
    fn carve_out_span_for_closure(&mut self) {
        let curr_span = self.curr().span;
        let left_cutoff = curr_span.lo();
        let right_cutoff = curr_span.hi();
        let has_pre_closure_span = self.prev().span.lo() < right_cutoff;
        let has_post_closure_span = self.prev().span.hi() > right_cutoff;
        let mut pending_dups = self.pending_dups.split_off(0);
        if has_pre_closure_span {
            let mut pre_closure = self.prev().clone();
            pre_closure.span = pre_closure.span.with_hi(left_cutoff);
            debug!("  prev overlaps a closure. Adding span for pre_closure={:?}", pre_closure);
            if !pending_dups.is_empty() {
                for mut dup in pending_dups.iter().cloned() {
                    dup.span = dup.span.with_hi(left_cutoff);
                    debug!("    ...and at least one pre_closure dup={:?}", dup);
                    self.push_refined_span(dup);
                }
            }
            self.push_refined_span(pre_closure);
        }
        if has_post_closure_span {
            // Mutate `prev.span()` to start after the closure (and discard curr).
            // (**NEVER** update `prev_original_span` because it affects the assumptions
            // about how the `CoverageSpan`s are ordered.)
            self.prev_mut().span = self.prev().span.with_lo(right_cutoff);
            debug!("  Mutated prev.span to start after the closure. prev={:?}", self.prev());
            for dup in pending_dups.iter_mut() {
                debug!("    ...and at least one overlapping dup={:?}", dup);
                dup.span = dup.span.with_lo(right_cutoff);
            }
            self.pending_dups.append(&mut pending_dups);
            let closure_covspan = self.take_curr();
            self.push_refined_span(closure_covspan); // since self.prev() was already updated
        } else {
            pending_dups.clear();
        }
    }

    /// Called if `curr.span` equals `prev_original_span` (and potentially equal to all
    /// `pending_dups` spans, if any). Keep in mind, `prev.span()` may have been changed.
    /// If prev.span() was merged into other spans (with matching BCB, for instance),
    /// `prev.span.hi()` will be greater than (further right of) `prev_original_span.hi()`.
    /// If prev.span() was split off to the right of a closure, prev.span().lo() will be
    /// greater than prev_original_span.lo(). The actual span of `prev_original_span` is
    /// not as important as knowing that `prev()` **used to have the same span** as `curr()`,
    /// which means their sort order is still meaningful for determining the dominator
    /// relationship.
    ///
    /// When two `CoverageSpan`s have the same `Span`, dominated spans can be discarded; but if
    /// neither `CoverageSpan` dominates the other, both (or possibly more than two) are held,
    /// until their disposition is determined. In this latter case, the `prev` dup is moved into
    /// `pending_dups` so the new `curr` dup can be moved to `prev` for the next iteration.
    fn hold_pending_dups_unless_dominated(&mut self) {
        // Equal coverage spans are ordered by dominators before dominated (if any), so it should be
        // impossible for `curr` to dominate any previous `CoverageSpan`.
        debug_assert!(!self.span_bcb_dominates(self.curr(), self.prev()));

        let initial_pending_count = self.pending_dups.len();
        if initial_pending_count > 0 {
            let mut pending_dups = self.pending_dups.split_off(0);
            pending_dups.retain(|dup| !self.span_bcb_dominates(dup, self.curr()));
            self.pending_dups.append(&mut pending_dups);
            if self.pending_dups.len() < initial_pending_count {
                debug!(
                    "  discarded {} of {} pending_dups that dominated curr",
                    initial_pending_count - self.pending_dups.len(),
                    initial_pending_count
                );
            }
        }

        if self.span_bcb_dominates(self.prev(), self.curr()) {
            debug!(
                "  different bcbs but SAME spans, and prev dominates curr. Discard prev={:?}",
                self.prev()
            );
            self.cutoff_prev_at_overlapping_curr();
        // If one span dominates the other, associate the span with the code from the dominated
        // block only (`curr`), and discard the overlapping portion of the `prev` span. (Note
        // that if `prev.span` is wider than `prev_original_span`, a `CoverageSpan` will still
        // be created for `prev`s block, for the non-overlapping portion, left of `curr.span`.)
        //
        // For example:
        //     match somenum {
        //         x if x < 1 => { ... }
        //     }...
        //
        // The span for the first `x` is referenced by both the pattern block (every time it is
        // evaluated) and the arm code (only when matched). The counter will be applied only to
        // the dominated block. This allows coverage to track and highlight things like the
        // assignment of `x` above, if the branch is matched, making `x` available to the arm
        // code; and to track and highlight the question mark `?` "try" operator at the end of
        // a function call returning a `Result`, so the `?` is covered when the function returns
        // an `Err`, and not counted as covered if the function always returns `Ok`.
        } else {
            // Save `prev` in `pending_dups`. (`curr` will become `prev` in the next iteration.)
            // If the `curr` CoverageSpan is later discarded, `pending_dups` can be discarded as
            // well; but if `curr` is added to refined_spans, the `pending_dups` will also be added.
            debug!(
                "  different bcbs but SAME spans, and neither dominates, so keep curr for \
                next iter, and, pending upcoming spans (unless overlapping) add prev={:?}",
                self.prev()
            );
            let prev = self.take_prev();
            self.pending_dups.push(prev);
        }
    }

    /// `curr` overlaps `prev`. If `prev`s span extends left of `curr`s span, keep _only_
    /// statements that end before `curr.lo()` (if any), and add the portion of the
    /// combined span for those statements. Any other statements have overlapping spans
    /// that can be ignored because `curr` and/or other upcoming statements/spans inside
    /// the overlap area will produce their own counters. This disambiguation process
    /// avoids injecting multiple counters for overlapping spans, and the potential for
    /// double-counting.
    fn cutoff_prev_at_overlapping_curr(&mut self) {
        debug!(
            "  different bcbs, overlapping spans, so ignore/drop pending and only add prev \
            if it has statements that end before curr; prev={:?}",
            self.prev()
        );
        if self.pending_dups.is_empty() {
            let curr_span = self.curr().span;
            self.prev_mut().cutoff_statements_at(curr_span.lo());
            if self.prev().coverage_statements.is_empty() {
                debug!("  ... no non-overlapping statements to add");
            } else {
                debug!("  ... adding modified prev={:?}", self.prev());
                let prev = self.take_prev();
                self.push_refined_span(prev);
            }
        } else {
            // with `pending_dups`, `prev` cannot have any statements that don't overlap
            self.pending_dups.clear();
        }
    }

    fn span_bcb_dominates(&self, dom_covspan: &CoverageSpan, covspan: &CoverageSpan) -> bool {
        self.basic_coverage_blocks.dominates(dom_covspan.bcb, covspan.bcb)
    }
}

/// If the MIR `Statement` has a span contributive to computing coverage spans,
/// return it; otherwise return `None`.
fn filtered_statement_span(statement: &Statement<'_>) -> Option<Span> {
    match statement.kind {
        // These statements have spans that are often outside the scope of the executed source code
        // for their parent `BasicBlock`.
        StatementKind::StorageLive(_)
        | StatementKind::StorageDead(_)
        // Coverage should not be encountered, but don't inject coverage coverage
        | StatementKind::Coverage(_)
        // Ignore `ConstEvalCounter`s
        | StatementKind::ConstEvalCounter
        // Ignore `Nop`s
        | StatementKind::Nop => None,

        // FIXME(#78546): MIR InstrumentCoverage - Can the source_info.span for `FakeRead`
        // statements be more consistent?
        //
        // FakeReadCause::ForGuardBinding, in this example:
        //     match somenum {
        //         x if x < 1 => { ... }
        //     }...
        // The BasicBlock within the match arm code included one of these statements, but the span
        // for it covered the `1` in this source. The actual statements have nothing to do with that
        // source span:
        //     FakeRead(ForGuardBinding, _4);
        // where `_4` is:
        //     _4 = &_1; (at the span for the first `x`)
        // and `_1` is the `Place` for `somenum`.
        //
        // If and when the Issue is resolved, remove this special case match pattern:
        StatementKind::FakeRead(box (FakeReadCause::ForGuardBinding, _)) => None,

        // Retain spans from all other statements
        StatementKind::FakeRead(box (_, _)) // Not including `ForGuardBinding`
        | StatementKind::Intrinsic(..)
        | StatementKind::Assign(_)
        | StatementKind::SetDiscriminant { .. }
        | StatementKind::Deinit(..)
        | StatementKind::Retag(_, _)
        | StatementKind::PlaceMention(..)
        | StatementKind::AscribeUserType(_, _) => {
            Some(statement.source_info.span)
        }
    }
}

/// If the MIR `Terminator` has a span contributive to computing coverage spans,
/// return it; otherwise return `None`.
fn filtered_terminator_span(terminator: &Terminator<'_>) -> Option<Span> {
    match terminator.kind {
        // These terminators have spans that don't positively contribute to computing a reasonable
        // span of actually executed source code. (For example, SwitchInt terminators extracted from
        // an `if condition { block }` has a span that includes the executed block, if true,
        // but for coverage, the code region executed, up to *and* through the SwitchInt,
        // actually stops before the if's block.)
        TerminatorKind::Unreachable // Unreachable blocks are not connected to the MIR CFG
        | TerminatorKind::Assert { .. }
        | TerminatorKind::Drop { .. }
        | TerminatorKind::SwitchInt { .. }
        // For `FalseEdge`, only the `real` branch is taken, so it is similar to a `Goto`.
        | TerminatorKind::FalseEdge { .. }
        | TerminatorKind::Goto { .. } => None,

        // Call `func` operand can have a more specific span when part of a chain of calls
        | TerminatorKind::Call { ref func, .. } => {
            let mut span = terminator.source_info.span;
            if let mir::Operand::Constant(box constant) = func {
                if constant.span.lo() > span.lo() {
                    span = span.with_lo(constant.span.lo());
                }
            }
            Some(span)
        }

        // Retain spans from all other terminators
        TerminatorKind::UnwindResume
        | TerminatorKind::UnwindTerminate(_)
        | TerminatorKind::Return
        | TerminatorKind::Yield { .. }
        | TerminatorKind::GeneratorDrop
        | TerminatorKind::FalseUnwind { .. }
        | TerminatorKind::InlineAsm { .. } => {
            Some(terminator.source_info.span)
        }
    }
}

/// Returns an extrapolated span (pre-expansion[^1]) corresponding to a range
/// within the function's body source. This span is guaranteed to be contained
/// within, or equal to, the `body_span`. If the extrapolated span is not
/// contained within the `body_span`, the `body_span` is returned.
///
/// [^1]Expansions result from Rust syntax including macros, syntactic sugar,
/// etc.).
#[inline]
fn function_source_span(span: Span, body_span: Span) -> Span {
    let original_span = original_sp(span, body_span).with_ctxt(body_span.ctxt());
    if body_span.contains(original_span) { original_span } else { body_span }
}