1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
//! Code for projecting associated types out of trait references.
use super::PredicateObligation;
use crate::infer::InferCtxtUndoLogs;
use rustc_data_structures::{
snapshot_map::{self, SnapshotMapRef, SnapshotMapStorage},
undo_log::Rollback,
};
use rustc_middle::ty::{self, Ty};
pub use rustc_middle::traits::{EvaluationResult, Reveal};
pub(crate) type UndoLog<'tcx> =
snapshot_map::UndoLog<ProjectionCacheKey<'tcx>, ProjectionCacheEntry<'tcx>>;
#[derive(Clone)]
pub struct MismatchedProjectionTypes<'tcx> {
pub err: ty::error::TypeError<'tcx>,
}
#[derive(Clone)]
pub struct Normalized<'tcx, T> {
pub value: T,
pub obligations: Vec<PredicateObligation<'tcx>>,
}
pub type NormalizedTy<'tcx> = Normalized<'tcx, Ty<'tcx>>;
impl<'tcx, T> Normalized<'tcx, T> {
pub fn with<U>(self, value: U) -> Normalized<'tcx, U> {
Normalized { value, obligations: self.obligations }
}
}
// # Cache
/// The projection cache. Unlike the standard caches, this can include
/// infcx-dependent type variables, therefore we have to roll the
/// cache back each time we roll a snapshot back, to avoid assumptions
/// on yet-unresolved inference variables. Types with placeholder
/// regions also have to be removed when the respective snapshot ends.
///
/// Because of that, projection cache entries can be "stranded" and left
/// inaccessible when type variables inside the key are resolved. We make no
/// attempt to recover or remove "stranded" entries, but rather let them be
/// (for the lifetime of the infcx).
///
/// Entries in the projection cache might contain inference variables
/// that will be resolved by obligations on the projection cache entry (e.g.,
/// when a type parameter in the associated type is constrained through
/// an "RFC 447" projection on the impl).
///
/// When working with a fulfillment context, the derived obligations of each
/// projection cache entry will be registered on the fulfillcx, so any users
/// that can wait for a fulfillcx fixed point need not care about this. However,
/// users that don't wait for a fixed point (e.g., trait evaluation) have to
/// resolve the obligations themselves to make sure the projected result is
/// ok and avoid issues like #43132.
///
/// If that is done, after evaluation the obligations, it is a good idea to
/// call `ProjectionCache::complete` to make sure the obligations won't be
/// re-evaluated and avoid an exponential worst-case.
//
// FIXME: we probably also want some sort of cross-infcx cache here to
// reduce the amount of duplication. Let's see what we get with the Chalk reforms.
pub struct ProjectionCache<'a, 'tcx> {
map: &'a mut SnapshotMapStorage<ProjectionCacheKey<'tcx>, ProjectionCacheEntry<'tcx>>,
undo_log: &'a mut InferCtxtUndoLogs<'tcx>,
}
#[derive(Clone, Default)]
pub struct ProjectionCacheStorage<'tcx> {
map: SnapshotMapStorage<ProjectionCacheKey<'tcx>, ProjectionCacheEntry<'tcx>>,
}
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub struct ProjectionCacheKey<'tcx> {
ty: ty::AliasTy<'tcx>,
}
impl<'tcx> ProjectionCacheKey<'tcx> {
pub fn new(ty: ty::AliasTy<'tcx>) -> Self {
Self { ty }
}
}
#[derive(Clone, Debug)]
pub enum ProjectionCacheEntry<'tcx> {
InProgress,
Ambiguous,
Recur,
Error,
NormalizedTy {
ty: Normalized<'tcx, ty::Term<'tcx>>,
/// If we were able to successfully evaluate the
/// corresponding cache entry key during predicate
/// evaluation, then this field stores the final
/// result obtained from evaluating all of the projection
/// sub-obligations. During evaluation, we will skip
/// evaluating the cached sub-obligations in `ty`
/// if this field is set. Evaluation only
/// cares about the final result, so we don't
/// care about any region constraint side-effects
/// produced by evaluating the sub-obligations.
///
/// Additionally, we will clear out the sub-obligations
/// entirely if we ever evaluate the cache entry (along
/// with all its sub obligations) to `EvaluatedToOk`.
/// This affects all users of the cache, not just evaluation.
/// Since a result of `EvaluatedToOk` means that there were
/// no region obligations that need to be tracked, it's
/// fine to forget about the sub-obligations - they
/// don't provide any additional information. However,
/// we do *not* discard any obligations when we see
/// `EvaluatedToOkModuloRegions` - we don't know
/// which sub-obligations may introduce region constraints,
/// so we keep them all to be safe.
///
/// When we are not performing evaluation
/// (e.g. in `FulfillmentContext`), we ignore this field,
/// and always re-process the cached sub-obligations
/// (which may have been cleared out - see the above
/// paragraph).
/// This ensures that we do not lose any regions
/// constraints that arise from processing the
/// sub-obligations.
complete: Option<EvaluationResult>,
},
}
impl<'tcx> ProjectionCacheStorage<'tcx> {
#[inline]
pub(crate) fn with_log<'a>(
&'a mut self,
undo_log: &'a mut InferCtxtUndoLogs<'tcx>,
) -> ProjectionCache<'a, 'tcx> {
ProjectionCache { map: &mut self.map, undo_log }
}
}
impl<'tcx> ProjectionCache<'_, 'tcx> {
#[inline]
fn map(
&mut self,
) -> SnapshotMapRef<
'_,
ProjectionCacheKey<'tcx>,
ProjectionCacheEntry<'tcx>,
InferCtxtUndoLogs<'tcx>,
> {
self.map.with_log(self.undo_log)
}
pub fn clear(&mut self) {
self.map().clear();
}
/// Try to start normalize `key`; returns an error if
/// normalization already occurred (this error corresponds to a
/// cache hit, so it's actually a good thing).
pub fn try_start(
&mut self,
key: ProjectionCacheKey<'tcx>,
) -> Result<(), ProjectionCacheEntry<'tcx>> {
let mut map = self.map();
if let Some(entry) = map.get(&key) {
return Err(entry.clone());
}
map.insert(key, ProjectionCacheEntry::InProgress);
Ok(())
}
/// Indicates that `key` was normalized to `value`.
pub fn insert_term(
&mut self,
key: ProjectionCacheKey<'tcx>,
value: Normalized<'tcx, ty::Term<'tcx>>,
) {
debug!(
"ProjectionCacheEntry::insert_ty: adding cache entry: key={:?}, value={:?}",
key, value
);
let mut map = self.map();
if let Some(ProjectionCacheEntry::Recur) = map.get(&key) {
debug!("Not overwriting Recur");
return;
}
let fresh_key =
map.insert(key, ProjectionCacheEntry::NormalizedTy { ty: value, complete: None });
assert!(!fresh_key, "never started projecting `{key:?}`");
}
/// Mark the relevant projection cache key as having its derived obligations
/// complete, so they won't have to be re-computed (this is OK to do in a
/// snapshot - if the snapshot is rolled back, the obligations will be
/// marked as incomplete again).
pub fn complete(&mut self, key: ProjectionCacheKey<'tcx>, result: EvaluationResult) {
let mut map = self.map();
match map.get(&key) {
Some(ProjectionCacheEntry::NormalizedTy { ty, complete: _ }) => {
info!("ProjectionCacheEntry::complete({:?}) - completing {:?}", key, ty);
let mut ty = ty.clone();
if result.must_apply_considering_regions() {
ty.obligations = vec![];
}
map.insert(key, ProjectionCacheEntry::NormalizedTy { ty, complete: Some(result) });
}
ref value => {
// Type inference could "strand behind" old cache entries. Leave
// them alone for now.
info!("ProjectionCacheEntry::complete({:?}) - ignoring {:?}", key, value);
}
};
}
pub fn is_complete(&mut self, key: ProjectionCacheKey<'tcx>) -> Option<EvaluationResult> {
self.map().get(&key).and_then(|res| match res {
ProjectionCacheEntry::NormalizedTy { ty: _, complete } => *complete,
_ => None,
})
}
/// Indicates that trying to normalize `key` resulted in
/// ambiguity. No point in trying it again then until we gain more
/// type information (in which case, the "fully resolved" key will
/// be different).
pub fn ambiguous(&mut self, key: ProjectionCacheKey<'tcx>) {
let fresh = self.map().insert(key, ProjectionCacheEntry::Ambiguous);
assert!(!fresh, "never started projecting `{key:?}`");
}
/// Indicates that while trying to normalize `key`, `key` was required to
/// be normalized again. Selection or evaluation should eventually report
/// an error here.
pub fn recur(&mut self, key: ProjectionCacheKey<'tcx>) {
let fresh = self.map().insert(key, ProjectionCacheEntry::Recur);
assert!(!fresh, "never started projecting `{key:?}`");
}
/// Indicates that trying to normalize `key` resulted in
/// error.
pub fn error(&mut self, key: ProjectionCacheKey<'tcx>) {
let fresh = self.map().insert(key, ProjectionCacheEntry::Error);
assert!(!fresh, "never started projecting `{key:?}`");
}
}
impl<'tcx> Rollback<UndoLog<'tcx>> for ProjectionCacheStorage<'tcx> {
fn reverse(&mut self, undo: UndoLog<'tcx>) {
self.map.reverse(undo);
}
}