1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
//! This module contains the `InterpCx` methods for executing a single step of the interpreter.
//!
//! The main entry point is the `step` method.
use either::Either;
use rustc_middle::mir;
use rustc_middle::mir::interpret::{InterpResult, Scalar};
use rustc_middle::ty::layout::LayoutOf;
use super::{ImmTy, InterpCx, Machine, Projectable};
use crate::util;
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
/// Returns `true` as long as there are more things to do.
///
/// This is used by [priroda](https://github.com/oli-obk/priroda)
///
/// This is marked `#inline(always)` to work around adversarial codegen when `opt-level = 3`
#[inline(always)]
pub fn step(&mut self) -> InterpResult<'tcx, bool> {
if self.stack().is_empty() {
return Ok(false);
}
let Either::Left(loc) = self.frame().loc else {
// We are unwinding and this fn has no cleanup code.
// Just go on unwinding.
trace!("unwinding: skipping frame");
self.pop_stack_frame(/* unwinding */ true)?;
return Ok(true);
};
let basic_block = &self.body().basic_blocks[loc.block];
if let Some(stmt) = basic_block.statements.get(loc.statement_index) {
let old_frames = self.frame_idx();
self.statement(stmt)?;
// Make sure we are not updating `statement_index` of the wrong frame.
assert_eq!(old_frames, self.frame_idx());
// Advance the program counter.
self.frame_mut().loc.as_mut().left().unwrap().statement_index += 1;
return Ok(true);
}
M::before_terminator(self)?;
let terminator = basic_block.terminator();
self.terminator(terminator)?;
Ok(true)
}
/// Runs the interpretation logic for the given `mir::Statement` at the current frame and
/// statement counter.
///
/// This does NOT move the statement counter forward, the caller has to do that!
pub fn statement(&mut self, stmt: &mir::Statement<'tcx>) -> InterpResult<'tcx> {
info!("{:?}", stmt);
use rustc_middle::mir::StatementKind::*;
match &stmt.kind {
Assign(box (place, rvalue)) => self.eval_rvalue_into_place(rvalue, *place)?,
SetDiscriminant { place, variant_index } => {
let dest = self.eval_place(**place)?;
self.write_discriminant(*variant_index, &dest)?;
}
Deinit(place) => {
let dest = self.eval_place(**place)?;
self.write_uninit(&dest)?;
}
// Mark locals as alive
StorageLive(local) => {
self.storage_live(*local)?;
}
// Mark locals as dead
StorageDead(local) => {
self.storage_dead(*local)?;
}
// No dynamic semantics attached to `FakeRead`; MIR
// interpreter is solely intended for borrowck'ed code.
FakeRead(..) => {}
// Stacked Borrows.
Retag(kind, place) => {
let dest = self.eval_place(**place)?;
M::retag_place_contents(self, *kind, &dest)?;
}
Intrinsic(box intrinsic) => self.emulate_nondiverging_intrinsic(intrinsic)?,
// Evaluate the place expression, without reading from it.
PlaceMention(box place) => {
let _ = self.eval_place(*place)?;
}
// This exists purely to guide borrowck lifetime inference, and does not have
// an operational effect.
AscribeUserType(..) => {}
// Currently, Miri discards Coverage statements. Coverage statements are only injected
// via an optional compile time MIR pass and have no side effects. Since Coverage
// statements don't exist at the source level, it is safe for Miri to ignore them, even
// for undefined behavior (UB) checks.
//
// A coverage counter inside a const expression (for example, a counter injected in a
// const function) is discarded when the const is evaluated at compile time. Whether
// this should change, and/or how to implement a const eval counter, is a subject of the
// following issue:
//
// FIXME(#73156): Handle source code coverage in const eval
Coverage(..) => {}
ConstEvalCounter => {
M::increment_const_eval_counter(self)?;
}
// Defined to do nothing. These are added by optimization passes, to avoid changing the
// size of MIR constantly.
Nop => {}
}
Ok(())
}
/// Evaluate an assignment statement.
///
/// There is no separate `eval_rvalue` function. Instead, the code for handling each rvalue
/// type writes its results directly into the memory specified by the place.
pub fn eval_rvalue_into_place(
&mut self,
rvalue: &mir::Rvalue<'tcx>,
place: mir::Place<'tcx>,
) -> InterpResult<'tcx> {
let dest = self.eval_place(place)?;
// FIXME: ensure some kind of non-aliasing between LHS and RHS?
// Also see https://github.com/rust-lang/rust/issues/68364.
use rustc_middle::mir::Rvalue::*;
match *rvalue {
ThreadLocalRef(did) => {
let ptr = M::thread_local_static_base_pointer(self, did)?;
self.write_pointer(ptr, &dest)?;
}
Use(ref operand) => {
// Avoid recomputing the layout
let op = self.eval_operand(operand, Some(dest.layout))?;
self.copy_op(&op, &dest, /*allow_transmute*/ false)?;
}
CopyForDeref(place) => {
let op = self.eval_place_to_op(place, Some(dest.layout))?;
self.copy_op(&op, &dest, /* allow_transmute*/ false)?;
}
BinaryOp(bin_op, box (ref left, ref right)) => {
let layout = util::binop_left_homogeneous(bin_op).then_some(dest.layout);
let left = self.read_immediate(&self.eval_operand(left, layout)?)?;
let layout = util::binop_right_homogeneous(bin_op).then_some(left.layout);
let right = self.read_immediate(&self.eval_operand(right, layout)?)?;
self.binop_ignore_overflow(bin_op, &left, &right, &dest)?;
}
CheckedBinaryOp(bin_op, box (ref left, ref right)) => {
// Due to the extra boolean in the result, we can never reuse the `dest.layout`.
let left = self.read_immediate(&self.eval_operand(left, None)?)?;
let layout = util::binop_right_homogeneous(bin_op).then_some(left.layout);
let right = self.read_immediate(&self.eval_operand(right, layout)?)?;
self.binop_with_overflow(bin_op, &left, &right, &dest)?;
}
UnaryOp(un_op, ref operand) => {
// The operand always has the same type as the result.
let val = self.read_immediate(&self.eval_operand(operand, Some(dest.layout))?)?;
let val = self.wrapping_unary_op(un_op, &val)?;
assert_eq!(val.layout, dest.layout, "layout mismatch for result of {un_op:?}");
self.write_immediate(*val, &dest)?;
}
Aggregate(box ref kind, ref operands) => {
self.write_aggregate(kind, operands, &dest)?;
}
Repeat(ref operand, _) => {
let src = self.eval_operand(operand, None)?;
assert!(src.layout.is_sized());
let dest = self.force_allocation(&dest)?;
let length = dest.len(self)?;
if length == 0 {
// Nothing to copy... but let's still make sure that `dest` as a place is valid.
self.get_place_alloc_mut(&dest)?;
} else {
// Write the src to the first element.
let first = self.project_index(&dest, 0)?;
self.copy_op(&src, &first, /*allow_transmute*/ false)?;
// This is performance-sensitive code for big static/const arrays! So we
// avoid writing each operand individually and instead just make many copies
// of the first element.
let elem_size = first.layout.size;
let first_ptr = first.ptr();
let rest_ptr = first_ptr.offset(elem_size, self)?;
// For the alignment of `rest_ptr`, we crucially do *not* use `first.align` as
// that place might be more aligned than its type mandates (a `u8` array could
// be 4-aligned if it sits at the right spot in a struct). We have to also factor
// in element size.
self.mem_copy_repeatedly(
first_ptr,
dest.align,
rest_ptr,
dest.align.restrict_for_offset(elem_size),
elem_size,
length - 1,
/*nonoverlapping:*/ true,
)?;
}
}
Len(place) => {
let src = self.eval_place(place)?;
let len = src.len(self)?;
self.write_scalar(Scalar::from_target_usize(len, self), &dest)?;
}
Ref(_, borrow_kind, place) => {
let src = self.eval_place(place)?;
let place = self.force_allocation(&src)?;
let val = ImmTy::from_immediate(place.to_ref(self), dest.layout);
// A fresh reference was created, make sure it gets retagged.
let val = M::retag_ptr_value(
self,
if borrow_kind.allows_two_phase_borrow() {
mir::RetagKind::TwoPhase
} else {
mir::RetagKind::Default
},
&val,
)?;
self.write_immediate(*val, &dest)?;
}
AddressOf(_, place) => {
// Figure out whether this is an addr_of of an already raw place.
let place_base_raw = if place.is_indirect_first_projection() {
let ty = self.frame().body.local_decls[place.local].ty;
ty.is_unsafe_ptr()
} else {
// Not a deref, and thus not raw.
false
};
let src = self.eval_place(place)?;
let place = self.force_allocation(&src)?;
let mut val = ImmTy::from_immediate(place.to_ref(self), dest.layout);
if !place_base_raw {
// If this was not already raw, it needs retagging.
val = M::retag_ptr_value(self, mir::RetagKind::Raw, &val)?;
}
self.write_immediate(*val, &dest)?;
}
NullaryOp(ref null_op, ty) => {
let ty = self.subst_from_current_frame_and_normalize_erasing_regions(ty)?;
let layout = self.layout_of(ty)?;
if let mir::NullOp::SizeOf | mir::NullOp::AlignOf = null_op && layout.is_unsized() {
span_bug!(
self.frame().current_span(),
"{null_op:?} MIR operator called for unsized type {ty}",
);
}
let val = match null_op {
mir::NullOp::SizeOf => layout.size.bytes(),
mir::NullOp::AlignOf => layout.align.abi.bytes(),
mir::NullOp::OffsetOf(fields) => {
layout.offset_of_subfield(self, fields.iter().map(|f| f.index())).bytes()
}
};
self.write_scalar(Scalar::from_target_usize(val, self), &dest)?;
}
ShallowInitBox(ref operand, _) => {
let src = self.eval_operand(operand, None)?;
let v = self.read_immediate(&src)?;
self.write_immediate(*v, &dest)?;
}
Cast(cast_kind, ref operand, cast_ty) => {
let src = self.eval_operand(operand, None)?;
let cast_ty =
self.subst_from_current_frame_and_normalize_erasing_regions(cast_ty)?;
self.cast(&src, cast_kind, cast_ty, &dest)?;
}
Discriminant(place) => {
let op = self.eval_place_to_op(place, None)?;
let variant = self.read_discriminant(&op)?;
let discr = self.discriminant_for_variant(op.layout, variant)?;
self.write_immediate(*discr, &dest)?;
}
}
trace!("{:?}", self.dump_place(&dest));
Ok(())
}
/// Evaluate the given terminator. Will also adjust the stack frame and statement position accordingly.
fn terminator(&mut self, terminator: &mir::Terminator<'tcx>) -> InterpResult<'tcx> {
info!("{:?}", terminator.kind);
self.eval_terminator(terminator)?;
if !self.stack().is_empty() {
if let Either::Left(loc) = self.frame().loc {
info!("// executing {:?}", loc.block);
}
}
Ok(())
}
}