1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
//! This file builds up the `ScopeTree`, which describes
//! the parent links in the region hierarchy.
//!
//! For more information about how MIR-based region-checking works,
//! see the [rustc dev guide].
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/borrow_check.html
use rustc_ast::walk_list;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::{Arm, Block, Expr, Local, Pat, PatKind, Stmt};
use rustc_index::Idx;
use rustc_middle::middle::region::*;
use rustc_middle::ty::TyCtxt;
use rustc_span::source_map;
use rustc_span::Span;
use std::mem;
#[derive(Debug, Copy, Clone)]
pub struct Context {
/// The scope that contains any new variables declared, plus its depth in
/// the scope tree.
var_parent: Option<(Scope, ScopeDepth)>,
/// Region parent of expressions, etc., plus its depth in the scope tree.
parent: Option<(Scope, ScopeDepth)>,
}
struct RegionResolutionVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
// The number of expressions and patterns visited in the current body.
expr_and_pat_count: usize,
// When this is `true`, we record the `Scopes` we encounter
// when processing a Yield expression. This allows us to fix
// up their indices.
pessimistic_yield: bool,
// Stores scopes when `pessimistic_yield` is `true`.
fixup_scopes: Vec<Scope>,
// The generated scope tree.
scope_tree: ScopeTree,
cx: Context,
/// `terminating_scopes` is a set containing the ids of each
/// statement, or conditional/repeating expression. These scopes
/// are calling "terminating scopes" because, when attempting to
/// find the scope of a temporary, by default we search up the
/// enclosing scopes until we encounter the terminating scope. A
/// conditional/repeating expression is one which is not
/// guaranteed to execute exactly once upon entering the parent
/// scope. This could be because the expression only executes
/// conditionally, such as the expression `b` in `a && b`, or
/// because the expression may execute many times, such as a loop
/// body. The reason that we distinguish such expressions is that,
/// upon exiting the parent scope, we cannot statically know how
/// many times the expression executed, and thus if the expression
/// creates temporaries we cannot know statically how many such
/// temporaries we would have to cleanup. Therefore, we ensure that
/// the temporaries never outlast the conditional/repeating
/// expression, preventing the need for dynamic checks and/or
/// arbitrary amounts of stack space. Terminating scopes end
/// up being contained in a DestructionScope that contains the
/// destructor's execution.
terminating_scopes: FxHashSet<hir::ItemLocalId>,
}
/// Records the lifetime of a local variable as `cx.var_parent`
fn record_var_lifetime(
visitor: &mut RegionResolutionVisitor<'_>,
var_id: hir::ItemLocalId,
_sp: Span,
) {
match visitor.cx.var_parent {
None => {
// this can happen in extern fn declarations like
//
// extern fn isalnum(c: c_int) -> c_int
}
Some((parent_scope, _)) => visitor.scope_tree.record_var_scope(var_id, parent_scope),
}
}
fn resolve_block<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, blk: &'tcx hir::Block<'tcx>) {
debug!("resolve_block(blk.hir_id={:?})", blk.hir_id);
let prev_cx = visitor.cx;
// We treat the tail expression in the block (if any) somewhat
// differently from the statements. The issue has to do with
// temporary lifetimes. Consider the following:
//
// quux({
// let inner = ... (&bar()) ...;
//
// (... (&foo()) ...) // (the tail expression)
// }, other_argument());
//
// Each of the statements within the block is a terminating
// scope, and thus a temporary (e.g., the result of calling
// `bar()` in the initializer expression for `let inner = ...;`)
// will be cleaned up immediately after its corresponding
// statement (i.e., `let inner = ...;`) executes.
//
// On the other hand, temporaries associated with evaluating the
// tail expression for the block are assigned lifetimes so that
// they will be cleaned up as part of the terminating scope
// *surrounding* the block expression. Here, the terminating
// scope for the block expression is the `quux(..)` call; so
// those temporaries will only be cleaned up *after* both
// `other_argument()` has run and also the call to `quux(..)`
// itself has returned.
visitor.enter_node_scope_with_dtor(blk.hir_id.local_id);
visitor.cx.var_parent = visitor.cx.parent;
{
// This block should be kept approximately in sync with
// `intravisit::walk_block`. (We manually walk the block, rather
// than call `walk_block`, in order to maintain precise
// index information.)
for (i, statement) in blk.stmts.iter().enumerate() {
match statement.kind {
hir::StmtKind::Local(hir::Local { els: Some(els), .. }) => {
// Let-else has a special lexical structure for variables.
// First we take a checkpoint of the current scope context here.
let mut prev_cx = visitor.cx;
visitor.enter_scope(Scope {
id: blk.hir_id.local_id,
data: ScopeData::Remainder(FirstStatementIndex::new(i)),
});
visitor.cx.var_parent = visitor.cx.parent;
visitor.visit_stmt(statement);
// We need to back out temporarily to the last enclosing scope
// for the `else` block, so that even the temporaries receiving
// extended lifetime will be dropped inside this block.
// We are visiting the `else` block in this order so that
// the sequence of visits agree with the order in the default
// `hir::intravisit` visitor.
mem::swap(&mut prev_cx, &mut visitor.cx);
visitor.terminating_scopes.insert(els.hir_id.local_id);
visitor.visit_block(els);
// From now on, we continue normally.
visitor.cx = prev_cx;
}
hir::StmtKind::Local(..) => {
// Each declaration introduces a subscope for bindings
// introduced by the declaration; this subscope covers a
// suffix of the block. Each subscope in a block has the
// previous subscope in the block as a parent, except for
// the first such subscope, which has the block itself as a
// parent.
visitor.enter_scope(Scope {
id: blk.hir_id.local_id,
data: ScopeData::Remainder(FirstStatementIndex::new(i)),
});
visitor.cx.var_parent = visitor.cx.parent;
visitor.visit_stmt(statement)
}
hir::StmtKind::Item(..) => {
// Don't create scopes for items, since they won't be
// lowered to THIR and MIR.
}
hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => visitor.visit_stmt(statement),
}
}
walk_list!(visitor, visit_expr, &blk.expr);
}
visitor.cx = prev_cx;
}
fn resolve_arm<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, arm: &'tcx hir::Arm<'tcx>) {
let prev_cx = visitor.cx;
visitor.enter_scope(Scope { id: arm.hir_id.local_id, data: ScopeData::Node });
visitor.cx.var_parent = visitor.cx.parent;
visitor.terminating_scopes.insert(arm.body.hir_id.local_id);
if let Some(hir::Guard::If(expr)) = arm.guard {
visitor.terminating_scopes.insert(expr.hir_id.local_id);
}
intravisit::walk_arm(visitor, arm);
visitor.cx = prev_cx;
}
fn resolve_pat<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, pat: &'tcx hir::Pat<'tcx>) {
visitor.record_child_scope(Scope { id: pat.hir_id.local_id, data: ScopeData::Node });
// If this is a binding then record the lifetime of that binding.
if let PatKind::Binding(..) = pat.kind {
record_var_lifetime(visitor, pat.hir_id.local_id, pat.span);
}
debug!("resolve_pat - pre-increment {} pat = {:?}", visitor.expr_and_pat_count, pat);
intravisit::walk_pat(visitor, pat);
visitor.expr_and_pat_count += 1;
debug!("resolve_pat - post-increment {} pat = {:?}", visitor.expr_and_pat_count, pat);
}
fn resolve_stmt<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, stmt: &'tcx hir::Stmt<'tcx>) {
let stmt_id = stmt.hir_id.local_id;
debug!("resolve_stmt(stmt.id={:?})", stmt_id);
// Every statement will clean up the temporaries created during
// execution of that statement. Therefore each statement has an
// associated destruction scope that represents the scope of the
// statement plus its destructors, and thus the scope for which
// regions referenced by the destructors need to survive.
visitor.terminating_scopes.insert(stmt_id);
let prev_parent = visitor.cx.parent;
visitor.enter_node_scope_with_dtor(stmt_id);
intravisit::walk_stmt(visitor, stmt);
visitor.cx.parent = prev_parent;
}
fn resolve_expr<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
debug!("resolve_expr - pre-increment {} expr = {:?}", visitor.expr_and_pat_count, expr);
let prev_cx = visitor.cx;
visitor.enter_node_scope_with_dtor(expr.hir_id.local_id);
{
let terminating_scopes = &mut visitor.terminating_scopes;
let mut terminating = |id: hir::ItemLocalId| {
terminating_scopes.insert(id);
};
match expr.kind {
// Conditional or repeating scopes are always terminating
// scopes, meaning that temporaries cannot outlive them.
// This ensures fixed size stacks.
hir::ExprKind::Binary(
source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
l,
r,
) => {
// expr is a short circuiting operator (|| or &&). As its
// functionality can't be overridden by traits, it always
// processes bool sub-expressions. bools are Copy and thus we
// can drop any temporaries in evaluation (read) order
// (with the exception of potentially failing let expressions).
// We achieve this by enclosing the operands in a terminating
// scope, both the LHS and the RHS.
// We optimize this a little in the presence of chains.
// Chains like a && b && c get lowered to AND(AND(a, b), c).
// In here, b and c are RHS, while a is the only LHS operand in
// that chain. This holds true for longer chains as well: the
// leading operand is always the only LHS operand that is not a
// binop itself. Putting a binop like AND(a, b) into a
// terminating scope is not useful, thus we only put the LHS
// into a terminating scope if it is not a binop.
let terminate_lhs = match l.kind {
// let expressions can create temporaries that live on
hir::ExprKind::Let(_) => false,
// binops already drop their temporaries, so there is no
// need to put them into a terminating scope.
// This is purely an optimization to reduce the number of
// terminating scopes.
hir::ExprKind::Binary(
source_map::Spanned {
node: hir::BinOpKind::And | hir::BinOpKind::Or, ..
},
..,
) => false,
// otherwise: mark it as terminating
_ => true,
};
if terminate_lhs {
terminating(l.hir_id.local_id);
}
// `Let` expressions (in a let-chain) shouldn't be terminating, as their temporaries
// should live beyond the immediate expression
if !matches!(r.kind, hir::ExprKind::Let(_)) {
terminating(r.hir_id.local_id);
}
}
hir::ExprKind::If(_, then, Some(otherwise)) => {
terminating(then.hir_id.local_id);
terminating(otherwise.hir_id.local_id);
}
hir::ExprKind::If(_, then, None) => {
terminating(then.hir_id.local_id);
}
hir::ExprKind::Loop(body, _, _, _) => {
terminating(body.hir_id.local_id);
}
hir::ExprKind::DropTemps(expr) => {
// `DropTemps(expr)` does not denote a conditional scope.
// Rather, we want to achieve the same behavior as `{ let _t = expr; _t }`.
terminating(expr.hir_id.local_id);
}
hir::ExprKind::AssignOp(..)
| hir::ExprKind::Index(..)
| hir::ExprKind::Unary(..)
| hir::ExprKind::Call(..)
| hir::ExprKind::MethodCall(..) => {
// FIXME(https://github.com/rust-lang/rfcs/issues/811) Nested method calls
//
// The lifetimes for a call or method call look as follows:
//
// call.id
// - arg0.id
// - ...
// - argN.id
// - call.callee_id
//
// The idea is that call.callee_id represents *the time when
// the invoked function is actually running* and call.id
// represents *the time to prepare the arguments and make the
// call*. See the section "Borrows in Calls" borrowck/README.md
// for an extended explanation of why this distinction is
// important.
//
// record_superlifetime(new_cx, expr.callee_id);
}
_ => {}
}
}
let prev_pessimistic = visitor.pessimistic_yield;
// Ordinarily, we can rely on the visit order of HIR intravisit
// to correspond to the actual execution order of statements.
// However, there's a weird corner case with compound assignment
// operators (e.g. `a += b`). The evaluation order depends on whether
// or not the operator is overloaded (e.g. whether or not a trait
// like AddAssign is implemented).
// For primitive types (which, despite having a trait impl, don't actually
// end up calling it), the evaluation order is right-to-left. For example,
// the following code snippet:
//
// let y = &mut 0;
// *{println!("LHS!"); y} += {println!("RHS!"); 1};
//
// will print:
//
// RHS!
// LHS!
//
// However, if the operator is used on a non-primitive type,
// the evaluation order will be left-to-right, since the operator
// actually get desugared to a method call. For example, this
// nearly identical code snippet:
//
// let y = &mut String::new();
// *{println!("LHS String"); y} += {println!("RHS String"); "hi"};
//
// will print:
// LHS String
// RHS String
//
// To determine the actual execution order, we need to perform
// trait resolution. Unfortunately, we need to be able to compute
// yield_in_scope before type checking is even done, as it gets
// used by AST borrowcheck.
//
// Fortunately, we don't need to know the actual execution order.
// It suffices to know the 'worst case' order with respect to yields.
// Specifically, we need to know the highest 'expr_and_pat_count'
// that we could assign to the yield expression. To do this,
// we pick the greater of the two values from the left-hand
// and right-hand expressions. This makes us overly conservative
// about what types could possibly live across yield points,
// but we will never fail to detect that a type does actually
// live across a yield point. The latter part is critical -
// we're already overly conservative about what types will live
// across yield points, as the generated MIR will determine
// when things are actually live. However, for typecheck to work
// properly, we can't miss any types.
match expr.kind {
// Manually recurse over closures and inline consts, because they are the only
// case of nested bodies that share the parent environment.
hir::ExprKind::Closure(&hir::Closure { body, .. })
| hir::ExprKind::ConstBlock(hir::ConstBlock { body, .. }) => {
let body = visitor.tcx.hir().body(body);
visitor.visit_body(body);
}
hir::ExprKind::AssignOp(_, left_expr, right_expr) => {
debug!(
"resolve_expr - enabling pessimistic_yield, was previously {}",
prev_pessimistic
);
let start_point = visitor.fixup_scopes.len();
visitor.pessimistic_yield = true;
// If the actual execution order turns out to be right-to-left,
// then we're fine. However, if the actual execution order is left-to-right,
// then we'll assign too low a count to any `yield` expressions
// we encounter in 'right_expression' - they should really occur after all of the
// expressions in 'left_expression'.
visitor.visit_expr(&right_expr);
visitor.pessimistic_yield = prev_pessimistic;
debug!("resolve_expr - restoring pessimistic_yield to {}", prev_pessimistic);
visitor.visit_expr(&left_expr);
debug!("resolve_expr - fixing up counts to {}", visitor.expr_and_pat_count);
// Remove and process any scopes pushed by the visitor
let target_scopes = visitor.fixup_scopes.drain(start_point..);
for scope in target_scopes {
let yield_data =
visitor.scope_tree.yield_in_scope.get_mut(&scope).unwrap().last_mut().unwrap();
let count = yield_data.expr_and_pat_count;
let span = yield_data.span;
// expr_and_pat_count never decreases. Since we recorded counts in yield_in_scope
// before walking the left-hand side, it should be impossible for the recorded
// count to be greater than the left-hand side count.
if count > visitor.expr_and_pat_count {
bug!(
"Encountered greater count {} at span {:?} - expected no greater than {}",
count,
span,
visitor.expr_and_pat_count
);
}
let new_count = visitor.expr_and_pat_count;
debug!(
"resolve_expr - increasing count for scope {:?} from {} to {} at span {:?}",
scope, count, new_count, span
);
yield_data.expr_and_pat_count = new_count;
}
}
hir::ExprKind::If(cond, then, Some(otherwise)) => {
let expr_cx = visitor.cx;
visitor.enter_scope(Scope { id: then.hir_id.local_id, data: ScopeData::IfThen });
visitor.cx.var_parent = visitor.cx.parent;
visitor.visit_expr(cond);
visitor.visit_expr(then);
visitor.cx = expr_cx;
visitor.visit_expr(otherwise);
}
hir::ExprKind::If(cond, then, None) => {
let expr_cx = visitor.cx;
visitor.enter_scope(Scope { id: then.hir_id.local_id, data: ScopeData::IfThen });
visitor.cx.var_parent = visitor.cx.parent;
visitor.visit_expr(cond);
visitor.visit_expr(then);
visitor.cx = expr_cx;
}
_ => intravisit::walk_expr(visitor, expr),
}
visitor.expr_and_pat_count += 1;
debug!("resolve_expr post-increment {}, expr = {:?}", visitor.expr_and_pat_count, expr);
if let hir::ExprKind::Yield(_, source) = &expr.kind {
// Mark this expr's scope and all parent scopes as containing `yield`.
let mut scope = Scope { id: expr.hir_id.local_id, data: ScopeData::Node };
loop {
let span = match expr.kind {
hir::ExprKind::Yield(expr, hir::YieldSource::Await { .. }) => {
expr.span.shrink_to_hi().to(expr.span)
}
_ => expr.span,
};
let data =
YieldData { span, expr_and_pat_count: visitor.expr_and_pat_count, source: *source };
match visitor.scope_tree.yield_in_scope.get_mut(&scope) {
Some(yields) => yields.push(data),
None => {
visitor.scope_tree.yield_in_scope.insert(scope, vec![data]);
}
}
if visitor.pessimistic_yield {
debug!("resolve_expr in pessimistic_yield - marking scope {:?} for fixup", scope);
visitor.fixup_scopes.push(scope);
}
// Keep traversing up while we can.
match visitor.scope_tree.parent_map.get(&scope) {
// Don't cross from closure bodies to their parent.
Some(&(superscope, _)) => match superscope.data {
ScopeData::CallSite => break,
_ => scope = superscope,
},
None => break,
}
}
}
visitor.cx = prev_cx;
}
fn resolve_local<'tcx>(
visitor: &mut RegionResolutionVisitor<'tcx>,
pat: Option<&'tcx hir::Pat<'tcx>>,
init: Option<&'tcx hir::Expr<'tcx>>,
) {
debug!("resolve_local(pat={:?}, init={:?})", pat, init);
let blk_scope = visitor.cx.var_parent.map(|(p, _)| p);
// As an exception to the normal rules governing temporary
// lifetimes, initializers in a let have a temporary lifetime
// of the enclosing block. This means that e.g., a program
// like the following is legal:
//
// let ref x = HashMap::new();
//
// Because the hash map will be freed in the enclosing block.
//
// We express the rules more formally based on 3 grammars (defined
// fully in the helpers below that implement them):
//
// 1. `E&`, which matches expressions like `&<rvalue>` that
// own a pointer into the stack.
//
// 2. `P&`, which matches patterns like `ref x` or `(ref x, ref
// y)` that produce ref bindings into the value they are
// matched against or something (at least partially) owned by
// the value they are matched against. (By partially owned,
// I mean that creating a binding into a ref-counted or managed value
// would still count.)
//
// 3. `ET`, which matches both rvalues like `foo()` as well as places
// based on rvalues like `foo().x[2].y`.
//
// A subexpression `<rvalue>` that appears in a let initializer
// `let pat [: ty] = expr` has an extended temporary lifetime if
// any of the following conditions are met:
//
// A. `pat` matches `P&` and `expr` matches `ET`
// (covers cases where `pat` creates ref bindings into an rvalue
// produced by `expr`)
// B. `ty` is a borrowed pointer and `expr` matches `ET`
// (covers cases where coercion creates a borrow)
// C. `expr` matches `E&`
// (covers cases `expr` borrows an rvalue that is then assigned
// to memory (at least partially) owned by the binding)
//
// Here are some examples hopefully giving an intuition where each
// rule comes into play and why:
//
// Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)`
// would have an extended lifetime, but not `foo()`.
//
// Rule B. `let x = &foo().x`. The rvalue `foo()` would have extended
// lifetime.
//
// In some cases, multiple rules may apply (though not to the same
// rvalue). For example:
//
// let ref x = [&a(), &b()];
//
// Here, the expression `[...]` has an extended lifetime due to rule
// A, but the inner rvalues `a()` and `b()` have an extended lifetime
// due to rule C.
if let Some(expr) = init {
record_rvalue_scope_if_borrow_expr(visitor, &expr, blk_scope);
if let Some(pat) = pat {
if is_binding_pat(pat) {
visitor.scope_tree.record_rvalue_candidate(
expr.hir_id,
RvalueCandidateType::Pattern {
target: expr.hir_id.local_id,
lifetime: blk_scope,
},
);
}
}
}
// Make sure we visit the initializer first, so expr_and_pat_count remains correct.
// The correct order, as shared between generator_interior, drop_ranges and intravisitor,
// is to walk initializer, followed by pattern bindings, finally followed by the `else` block.
if let Some(expr) = init {
visitor.visit_expr(expr);
}
if let Some(pat) = pat {
visitor.visit_pat(pat);
}
/// Returns `true` if `pat` match the `P&` non-terminal.
///
/// ```text
/// P& = ref X
/// | StructName { ..., P&, ... }
/// | VariantName(..., P&, ...)
/// | [ ..., P&, ... ]
/// | ( ..., P&, ... )
/// | ... "|" P& "|" ...
/// | box P&
/// ```
fn is_binding_pat(pat: &hir::Pat<'_>) -> bool {
// Note that the code below looks for *explicit* refs only, that is, it won't
// know about *implicit* refs as introduced in #42640.
//
// This is not a problem. For example, consider
//
// let (ref x, ref y) = (Foo { .. }, Bar { .. });
//
// Due to the explicit refs on the left hand side, the below code would signal
// that the temporary value on the right hand side should live until the end of
// the enclosing block (as opposed to being dropped after the let is complete).
//
// To create an implicit ref, however, you must have a borrowed value on the RHS
// already, as in this example (which won't compile before #42640):
//
// let Foo { x, .. } = &Foo { x: ..., ... };
//
// in place of
//
// let Foo { ref x, .. } = Foo { ... };
//
// In the former case (the implicit ref version), the temporary is created by the
// & expression, and its lifetime would be extended to the end of the block (due
// to a different rule, not the below code).
match pat.kind {
PatKind::Binding(hir::BindingAnnotation(hir::ByRef::Yes, _), ..) => true,
PatKind::Struct(_, field_pats, _) => {
field_pats.iter().any(|fp| is_binding_pat(&fp.pat))
}
PatKind::Slice(pats1, pats2, pats3) => {
pats1.iter().any(|p| is_binding_pat(&p))
|| pats2.iter().any(|p| is_binding_pat(&p))
|| pats3.iter().any(|p| is_binding_pat(&p))
}
PatKind::Or(subpats)
| PatKind::TupleStruct(_, subpats, _)
| PatKind::Tuple(subpats, _) => subpats.iter().any(|p| is_binding_pat(&p)),
PatKind::Box(subpat) => is_binding_pat(&subpat),
PatKind::Ref(_, _)
| PatKind::Binding(hir::BindingAnnotation(hir::ByRef::No, _), ..)
| PatKind::Wild
| PatKind::Path(_)
| PatKind::Lit(_)
| PatKind::Range(_, _, _) => false,
}
}
/// If `expr` matches the `E&` grammar, then records an extended rvalue scope as appropriate:
///
/// ```text
/// E& = & ET
/// | StructName { ..., f: E&, ... }
/// | [ ..., E&, ... ]
/// | ( ..., E&, ... )
/// | {...; E&}
/// | box E&
/// | E& as ...
/// | ( E& )
/// ```
fn record_rvalue_scope_if_borrow_expr<'tcx>(
visitor: &mut RegionResolutionVisitor<'tcx>,
expr: &hir::Expr<'_>,
blk_id: Option<Scope>,
) {
match expr.kind {
hir::ExprKind::AddrOf(_, _, subexpr) => {
record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id);
visitor.scope_tree.record_rvalue_candidate(
subexpr.hir_id,
RvalueCandidateType::Borrow {
target: subexpr.hir_id.local_id,
lifetime: blk_id,
},
);
}
hir::ExprKind::Struct(_, fields, _) => {
for field in fields {
record_rvalue_scope_if_borrow_expr(visitor, &field.expr, blk_id);
}
}
hir::ExprKind::Array(subexprs) | hir::ExprKind::Tup(subexprs) => {
for subexpr in subexprs {
record_rvalue_scope_if_borrow_expr(visitor, &subexpr, blk_id);
}
}
hir::ExprKind::Cast(subexpr, _) => {
record_rvalue_scope_if_borrow_expr(visitor, &subexpr, blk_id)
}
hir::ExprKind::Block(block, _) => {
if let Some(subexpr) = block.expr {
record_rvalue_scope_if_borrow_expr(visitor, &subexpr, blk_id);
}
}
hir::ExprKind::Call(..) | hir::ExprKind::MethodCall(..) => {
// FIXME(@dingxiangfei2009): choose call arguments here
// for candidacy for extended parameter rule application
}
hir::ExprKind::Index(..) => {
// FIXME(@dingxiangfei2009): select the indices
// as candidate for rvalue scope rules
}
_ => {}
}
}
}
impl<'tcx> RegionResolutionVisitor<'tcx> {
/// Records the current parent (if any) as the parent of `child_scope`.
/// Returns the depth of `child_scope`.
fn record_child_scope(&mut self, child_scope: Scope) -> ScopeDepth {
let parent = self.cx.parent;
self.scope_tree.record_scope_parent(child_scope, parent);
// If `child_scope` has no parent, it must be the root node, and so has
// a depth of 1. Otherwise, its depth is one more than its parent's.
parent.map_or(1, |(_p, d)| d + 1)
}
/// Records the current parent (if any) as the parent of `child_scope`,
/// and sets `child_scope` as the new current parent.
fn enter_scope(&mut self, child_scope: Scope) {
let child_depth = self.record_child_scope(child_scope);
self.cx.parent = Some((child_scope, child_depth));
}
fn enter_node_scope_with_dtor(&mut self, id: hir::ItemLocalId) {
// If node was previously marked as a terminating scope during the
// recursive visit of its parent node in the AST, then we need to
// account for the destruction scope representing the scope of
// the destructors that run immediately after it completes.
if self.terminating_scopes.contains(&id) {
self.enter_scope(Scope { id, data: ScopeData::Destruction });
}
self.enter_scope(Scope { id, data: ScopeData::Node });
}
}
impl<'tcx> Visitor<'tcx> for RegionResolutionVisitor<'tcx> {
fn visit_block(&mut self, b: &'tcx Block<'tcx>) {
resolve_block(self, b);
}
fn visit_body(&mut self, body: &'tcx hir::Body<'tcx>) {
let body_id = body.id();
let owner_id = self.tcx.hir().body_owner_def_id(body_id);
debug!(
"visit_body(id={:?}, span={:?}, body.id={:?}, cx.parent={:?})",
owner_id,
self.tcx.sess.source_map().span_to_diagnostic_string(body.value.span),
body_id,
self.cx.parent
);
// Save all state that is specific to the outer function
// body. These will be restored once down below, once we've
// visited the body.
let outer_ec = mem::replace(&mut self.expr_and_pat_count, 0);
let outer_cx = self.cx;
let outer_ts = mem::take(&mut self.terminating_scopes);
// The 'pessimistic yield' flag is set to true when we are
// processing a `+=` statement and have to make pessimistic
// control flow assumptions. This doesn't apply to nested
// bodies within the `+=` statements. See #69307.
let outer_pessimistic_yield = mem::replace(&mut self.pessimistic_yield, false);
self.terminating_scopes.insert(body.value.hir_id.local_id);
self.enter_scope(Scope { id: body.value.hir_id.local_id, data: ScopeData::CallSite });
self.enter_scope(Scope { id: body.value.hir_id.local_id, data: ScopeData::Arguments });
// The arguments and `self` are parented to the fn.
self.cx.var_parent = self.cx.parent.take();
for param in body.params {
self.visit_pat(¶m.pat);
}
// The body of the every fn is a root scope.
self.cx.parent = self.cx.var_parent;
if self.tcx.hir().body_owner_kind(owner_id).is_fn_or_closure() {
self.visit_expr(&body.value)
} else {
// Only functions have an outer terminating (drop) scope, while
// temporaries in constant initializers may be 'static, but only
// according to rvalue lifetime semantics, using the same
// syntactical rules used for let initializers.
//
// e.g., in `let x = &f();`, the temporary holding the result from
// the `f()` call lives for the entirety of the surrounding block.
//
// Similarly, `const X: ... = &f();` would have the result of `f()`
// live for `'static`, implying (if Drop restrictions on constants
// ever get lifted) that the value *could* have a destructor, but
// it'd get leaked instead of the destructor running during the
// evaluation of `X` (if at all allowed by CTFE).
//
// However, `const Y: ... = g(&f());`, like `let y = g(&f());`,
// would *not* let the `f()` temporary escape into an outer scope
// (i.e., `'static`), which means that after `g` returns, it drops,
// and all the associated destruction scope rules apply.
self.cx.var_parent = None;
resolve_local(self, None, Some(&body.value));
}
if body.generator_kind.is_some() {
self.scope_tree.body_expr_count.insert(body_id, self.expr_and_pat_count);
}
// Restore context we had at the start.
self.expr_and_pat_count = outer_ec;
self.cx = outer_cx;
self.terminating_scopes = outer_ts;
self.pessimistic_yield = outer_pessimistic_yield;
}
fn visit_arm(&mut self, a: &'tcx Arm<'tcx>) {
resolve_arm(self, a);
}
fn visit_pat(&mut self, p: &'tcx Pat<'tcx>) {
resolve_pat(self, p);
}
fn visit_stmt(&mut self, s: &'tcx Stmt<'tcx>) {
resolve_stmt(self, s);
}
fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
resolve_expr(self, ex);
}
fn visit_local(&mut self, l: &'tcx Local<'tcx>) {
resolve_local(self, Some(&l.pat), l.init)
}
}
/// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body;
/// in the case of closures, this will be redirected to the enclosing function.
///
/// Performance: This is a query rather than a simple function to enable
/// re-use in incremental scenarios. We may sometimes need to rerun the
/// type checker even when the HIR hasn't changed, and in those cases
/// we can avoid reconstructing the region scope tree.
pub fn region_scope_tree(tcx: TyCtxt<'_>, def_id: DefId) -> &ScopeTree {
let typeck_root_def_id = tcx.typeck_root_def_id(def_id);
if typeck_root_def_id != def_id {
return tcx.region_scope_tree(typeck_root_def_id);
}
let scope_tree = if let Some(body_id) = tcx.hir().maybe_body_owned_by(def_id.expect_local()) {
let mut visitor = RegionResolutionVisitor {
tcx,
scope_tree: ScopeTree::default(),
expr_and_pat_count: 0,
cx: Context { parent: None, var_parent: None },
terminating_scopes: Default::default(),
pessimistic_yield: false,
fixup_scopes: vec![],
};
let body = tcx.hir().body(body_id);
visitor.scope_tree.root_body = Some(body.value.hir_id);
visitor.visit_body(body);
visitor.scope_tree
} else {
ScopeTree::default()
};
tcx.arena.alloc(scope_tree)
}