1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
use super::inspect;
use super::inspect::ProofTreeBuilder;
use super::SolverMode;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::fx::FxHashSet;
use rustc_index::Idx;
use rustc_index::IndexVec;
use rustc_middle::dep_graph::dep_kinds;
use rustc_middle::traits::solve::inspect::CacheHit;
use rustc_middle::traits::solve::CacheData;
use rustc_middle::traits::solve::{CanonicalInput, Certainty, EvaluationCache, QueryResult};
use rustc_middle::ty::TyCtxt;
use rustc_session::Limit;
use std::collections::hash_map::Entry;

rustc_index::newtype_index! {
    pub struct StackDepth {}
}

#[derive(Debug)]
struct StackEntry<'tcx> {
    input: CanonicalInput<'tcx>,
    available_depth: Limit,
    // The maximum depth reached by this stack entry, only up-to date
    // for the top of the stack and lazily updated for the rest.
    reached_depth: StackDepth,
    // In case of a cycle, the depth of the root.
    cycle_root_depth: StackDepth,

    encountered_overflow: bool,
    has_been_used: bool,
    /// Starts out as `None` and gets set when rerunning this
    /// goal in case we encounter a cycle.
    provisional_result: Option<QueryResult<'tcx>>,

    /// We put only the root goal of a coinductive cycle into the global cache.
    ///
    /// If we were to use that result when later trying to prove another cycle
    /// participant, we can end up with unstable query results.
    ///
    /// See tests/ui/new-solver/coinduction/incompleteness-unstable-result.rs for
    /// an example of where this is needed.
    cycle_participants: FxHashSet<CanonicalInput<'tcx>>,
}

pub(super) struct SearchGraph<'tcx> {
    mode: SolverMode,
    local_overflow_limit: usize,
    /// The stack of goals currently being computed.
    ///
    /// An element is *deeper* in the stack if its index is *lower*.
    stack: IndexVec<StackDepth, StackEntry<'tcx>>,
    stack_entries: FxHashMap<CanonicalInput<'tcx>, StackDepth>,
}

impl<'tcx> SearchGraph<'tcx> {
    pub(super) fn new(tcx: TyCtxt<'tcx>, mode: SolverMode) -> SearchGraph<'tcx> {
        Self {
            mode,
            local_overflow_limit: tcx.recursion_limit().0.checked_ilog2().unwrap_or(0) as usize,
            stack: Default::default(),
            stack_entries: Default::default(),
        }
    }

    pub(super) fn solver_mode(&self) -> SolverMode {
        self.mode
    }

    pub(super) fn local_overflow_limit(&self) -> usize {
        self.local_overflow_limit
    }

    /// Update the stack and reached depths on cache hits.
    #[instrument(level = "debug", skip(self))]
    fn on_cache_hit(&mut self, additional_depth: usize, encountered_overflow: bool) {
        let reached_depth = self.stack.next_index().plus(additional_depth);
        if let Some(last) = self.stack.raw.last_mut() {
            last.reached_depth = last.reached_depth.max(reached_depth);
            last.encountered_overflow |= encountered_overflow;
        }
    }

    /// Pops the highest goal from the stack, lazily updating the
    /// the next goal in the stack.
    ///
    /// Directly popping from the stack instead of using this method
    /// would cause us to not track overflow and recursion depth correctly.
    fn pop_stack(&mut self) -> StackEntry<'tcx> {
        let elem = self.stack.pop().unwrap();
        assert!(self.stack_entries.remove(&elem.input).is_some());
        if let Some(last) = self.stack.raw.last_mut() {
            last.reached_depth = last.reached_depth.max(elem.reached_depth);
            last.encountered_overflow |= elem.encountered_overflow;
        }
        elem
    }

    /// The trait solver behavior is different for coherence
    /// so we use a separate cache. Alternatively we could use
    /// a single cache and share it between coherence and ordinary
    /// trait solving.
    pub(super) fn global_cache(&self, tcx: TyCtxt<'tcx>) -> &'tcx EvaluationCache<'tcx> {
        match self.mode {
            SolverMode::Normal => &tcx.new_solver_evaluation_cache,
            SolverMode::Coherence => &tcx.new_solver_coherence_evaluation_cache,
        }
    }

    pub(super) fn is_empty(&self) -> bool {
        self.stack.is_empty()
    }

    /// Whether we're currently in a cycle. This should only be used
    /// for debug assertions.
    pub(super) fn in_cycle(&self) -> bool {
        if let Some(stack_depth) = self.stack.last_index() {
            // Either the current goal on the stack is the root of a cycle
            // or it depends on a goal with a lower depth.
            self.stack[stack_depth].has_been_used
                || self.stack[stack_depth].cycle_root_depth != stack_depth
        } else {
            false
        }
    }

    /// Fetches whether the current goal encountered overflow.
    ///
    /// This should only be used for the check in `evaluate_goal`.
    pub(super) fn encountered_overflow(&self) -> bool {
        if let Some(last) = self.stack.raw.last() { last.encountered_overflow } else { false }
    }

    /// Resets `encountered_overflow` of the current goal.
    ///
    /// This should only be used for the check in `evaluate_goal`.
    pub(super) fn reset_encountered_overflow(&mut self, encountered_overflow: bool) -> bool {
        if let Some(last) = self.stack.raw.last_mut() {
            let prev = last.encountered_overflow;
            last.encountered_overflow = encountered_overflow;
            prev
        } else {
            false
        }
    }

    /// Returns the remaining depth allowed for nested goals.
    ///
    /// This is generally simply one less than the current depth.
    /// However, if we encountered overflow, we significantly reduce
    /// the remaining depth of all nested goals to prevent hangs
    /// in case there is exponential blowup.
    fn allowed_depth_for_nested(
        tcx: TyCtxt<'tcx>,
        stack: &IndexVec<StackDepth, StackEntry<'tcx>>,
    ) -> Option<Limit> {
        if let Some(last) = stack.raw.last() {
            if last.available_depth.0 == 0 {
                return None;
            }

            Some(if last.encountered_overflow {
                Limit(last.available_depth.0 / 4)
            } else {
                Limit(last.available_depth.0 - 1)
            })
        } else {
            Some(tcx.recursion_limit())
        }
    }

    /// Probably the most involved method of the whole solver.
    ///
    /// Given some goal which is proven via the `prove_goal` closure, this
    /// handles caching, overflow, and coinductive cycles.
    pub(super) fn with_new_goal(
        &mut self,
        tcx: TyCtxt<'tcx>,
        input: CanonicalInput<'tcx>,
        inspect: &mut ProofTreeBuilder<'tcx>,
        mut prove_goal: impl FnMut(&mut Self, &mut ProofTreeBuilder<'tcx>) -> QueryResult<'tcx>,
    ) -> QueryResult<'tcx> {
        // Check for overflow.
        let Some(available_depth) = Self::allowed_depth_for_nested(tcx, &self.stack) else {
            if let Some(last) = self.stack.raw.last_mut() {
                last.encountered_overflow = true;
            }

            inspect.goal_evaluation_kind(inspect::WipCanonicalGoalEvaluationKind::Overflow);
            return Self::response_no_constraints(tcx, input, Certainty::OVERFLOW);
        };

        // Try to fetch the goal from the global cache.
        if inspect.use_global_cache() {
            if let Some(CacheData { result, reached_depth, encountered_overflow }) =
                self.global_cache(tcx).get(
                    tcx,
                    input,
                    |cycle_participants| {
                        self.stack.iter().any(|entry| cycle_participants.contains(&entry.input))
                    },
                    available_depth,
                )
            {
                inspect.goal_evaluation_kind(inspect::WipCanonicalGoalEvaluationKind::CacheHit(
                    CacheHit::Global,
                ));
                self.on_cache_hit(reached_depth, encountered_overflow);
                return result;
            }
        }

        // Check whether we're in a cycle.
        match self.stack_entries.entry(input) {
            // No entry, we push this goal on the stack and try to prove it.
            Entry::Vacant(v) => {
                let depth = self.stack.next_index();
                let entry = StackEntry {
                    input,
                    available_depth,
                    reached_depth: depth,
                    cycle_root_depth: depth,
                    encountered_overflow: false,
                    has_been_used: false,
                    provisional_result: None,
                    cycle_participants: Default::default(),
                };
                assert_eq!(self.stack.push(entry), depth);
                v.insert(depth);
            }
            // We have a nested goal which relies on a goal `root` deeper in the stack.
            //
            // We first store that we may have to reprove `root` in case the provisional
            // response is not equal to the final response. We also update the depth of all
            // goals which recursively depend on our current goal to depend on `root`
            // instead.
            //
            // Finally we can return either the provisional response for that goal if we have a
            // coinductive cycle or an ambiguous result if the cycle is inductive.
            Entry::Occupied(entry) => {
                inspect.goal_evaluation_kind(inspect::WipCanonicalGoalEvaluationKind::CacheHit(
                    CacheHit::Provisional,
                ));

                let stack_depth = *entry.get();
                debug!("encountered cycle with depth {stack_depth:?}");
                // We start by updating the root depth of all cycle participants, and
                // add all cycle participants to the root.
                let root_depth = self.stack[stack_depth].cycle_root_depth;
                let (prev, participants) = self.stack.raw.split_at_mut(stack_depth.as_usize() + 1);
                let root = &mut prev[root_depth.as_usize()];
                for entry in participants {
                    debug_assert!(entry.cycle_root_depth >= root_depth);
                    entry.cycle_root_depth = root_depth;
                    root.cycle_participants.insert(entry.input);
                    // FIXME(@lcnr): I believe that this line is needed as we could
                    // otherwise access a cache entry for the root of a cycle while
                    // computing the result for a cycle participant. This can result
                    // in unstable results due to incompleteness.
                    //
                    // However, a test for this would be an even more complex version of
                    // tests/ui/traits/new-solver/coinduction/incompleteness-unstable-result.rs.
                    // I did not bother to write such a test and we have no regression test
                    // for this. It would be good to have such a test :)
                    #[allow(rustc::potential_query_instability)]
                    root.cycle_participants.extend(entry.cycle_participants.drain());
                }

                // If we're in a cycle, we have to retry proving the cycle head
                // until we reach a fixpoint. It is not enough to simply retry the
                // `root` goal of this cycle.
                //
                // See tests/ui/traits/new-solver/cycles/fixpoint-rerun-all-cycle-heads.rs
                // for an example.
                self.stack[stack_depth].has_been_used = true;
                return if let Some(result) = self.stack[stack_depth].provisional_result {
                    result
                } else {
                    // If we don't have a provisional result yet we're in the first iteration,
                    // so we start with no constraints.
                    let is_coinductive = self.stack.raw[stack_depth.index()..]
                        .iter()
                        .all(|entry| entry.input.value.goal.predicate.is_coinductive(tcx));
                    if is_coinductive {
                        Self::response_no_constraints(tcx, input, Certainty::Yes)
                    } else {
                        Self::response_no_constraints(tcx, input, Certainty::OVERFLOW)
                    }
                };
            }
        }

        // This is for global caching, so we properly track query dependencies.
        // Everything that affects the `result` should be performed within this
        // `with_anon_task` closure.
        let ((final_entry, result), dep_node) =
            tcx.dep_graph.with_anon_task(tcx, dep_kinds::TraitSelect, || {
                // When we encounter a coinductive cycle, we have to fetch the
                // result of that cycle while we are still computing it. Because
                // of this we continuously recompute the cycle until the result
                // of the previous iteration is equal to the final result, at which
                // point we are done.
                for _ in 0..self.local_overflow_limit() {
                    let result = prove_goal(self, inspect);

                    // Check whether the current goal is the root of a cycle and whether
                    // we have to rerun because its provisional result differed from the
                    // final result.
                    let stack_entry = self.pop_stack();
                    debug_assert_eq!(stack_entry.input, input);
                    if stack_entry.has_been_used
                        && stack_entry.provisional_result.map_or(true, |r| r != result)
                    {
                        // If so, update its provisional result and reevaluate it.
                        let depth = self.stack.push(StackEntry {
                            has_been_used: false,
                            provisional_result: Some(result),
                            ..stack_entry
                        });
                        assert_eq!(self.stack_entries.insert(input, depth), None);
                    } else {
                        return (stack_entry, result);
                    }
                }

                debug!("canonical cycle overflow");
                let current_entry = self.pop_stack();
                let result = Self::response_no_constraints(tcx, input, Certainty::OVERFLOW);
                (current_entry, result)
            });

        // We're now done with this goal. In case this goal is involved in a larger cycle
        // do not remove it from the provisional cache and update its provisional result.
        // We only add the root of cycles to the global cache.
        //
        // It is not possible for any nested goal to depend on something deeper on the
        // stack, as this would have also updated the depth of the current goal.
        if final_entry.cycle_root_depth == self.stack.next_index() {
            // When encountering a cycle, both inductive and coinductive, we only
            // move the root into the global cache. We also store all other cycle
            // participants involved.
            //
            // We disable the global cache entry of the root goal if a cycle
            // participant is on the stack. This is necessary to prevent unstable
            // results. See the comment of `StackEntry::cycle_participants` for
            // more details.
            let reached_depth = final_entry.reached_depth.as_usize() - self.stack.len();
            self.global_cache(tcx).insert(
                input,
                reached_depth,
                final_entry.encountered_overflow,
                final_entry.cycle_participants,
                dep_node,
                result,
            )
        }

        result
    }

    fn response_no_constraints(
        tcx: TyCtxt<'tcx>,
        goal: CanonicalInput<'tcx>,
        certainty: Certainty,
    ) -> QueryResult<'tcx> {
        Ok(super::response_no_constraints_raw(tcx, goal.max_universe, goal.variables, certainty))
    }
}