1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
use std::cell::RefCell;
use std::cmp::max;
use std::collections::hash_map::Entry;

use log::trace;
use rand::Rng;

use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_span::Span;
use rustc_target::abi::{HasDataLayout, Size};

use crate::*;

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ProvenanceMode {
    /// We support `expose_addr`/`from_exposed_addr` via "wildcard" provenance.
    /// However, we want on `from_exposed_addr` to alert the user of the precision loss.
    Default,
    /// Like `Default`, but without the warning.
    Permissive,
    /// We error on `from_exposed_addr`, ensuring no precision loss.
    Strict,
}

pub type GlobalState = RefCell<GlobalStateInner>;

#[derive(Clone, Debug)]
pub struct GlobalStateInner {
    /// This is used as a map between the address of each allocation and its `AllocId`.
    /// It is always sorted
    int_to_ptr_map: Vec<(u64, AllocId)>,
    /// The base address for each allocation.  We cannot put that into
    /// `AllocExtra` because function pointers also have a base address, and
    /// they do not have an `AllocExtra`.
    /// This is the inverse of `int_to_ptr_map`.
    base_addr: FxHashMap<AllocId, u64>,
    /// Whether an allocation has been exposed or not. This cannot be put
    /// into `AllocExtra` for the same reason as `base_addr`.
    exposed: FxHashSet<AllocId>,
    /// This is used as a memory address when a new pointer is casted to an integer. It
    /// is always larger than any address that was previously made part of a block.
    next_base_addr: u64,
    /// The provenance to use for int2ptr casts
    provenance_mode: ProvenanceMode,
}

impl VisitTags for GlobalStateInner {
    fn visit_tags(&self, _visit: &mut dyn FnMut(BorTag)) {
        // Nothing to visit here.
    }
}

impl GlobalStateInner {
    pub fn new(config: &MiriConfig, stack_addr: u64) -> Self {
        GlobalStateInner {
            int_to_ptr_map: Vec::default(),
            base_addr: FxHashMap::default(),
            exposed: FxHashSet::default(),
            next_base_addr: stack_addr,
            provenance_mode: config.provenance_mode,
        }
    }
}

impl<'mir, 'tcx> GlobalStateInner {
    // Returns the exposed `AllocId` that corresponds to the specified addr,
    // or `None` if the addr is out of bounds
    fn alloc_id_from_addr(ecx: &MiriInterpCx<'mir, 'tcx>, addr: u64) -> Option<AllocId> {
        let global_state = ecx.machine.intptrcast.borrow();
        assert!(global_state.provenance_mode != ProvenanceMode::Strict);

        let pos = global_state.int_to_ptr_map.binary_search_by_key(&addr, |(addr, _)| *addr);

        // Determine the in-bounds provenance for this pointer.
        // (This is only called on an actual access, so in-bounds is the only possible kind of provenance.)
        let alloc_id = match pos {
            Ok(pos) => Some(global_state.int_to_ptr_map[pos].1),
            Err(0) => None,
            Err(pos) => {
                // This is the largest of the addresses smaller than `int`,
                // i.e. the greatest lower bound (glb)
                let (glb, alloc_id) = global_state.int_to_ptr_map[pos - 1];
                // This never overflows because `addr >= glb`
                let offset = addr - glb;
                // If the offset exceeds the size of the allocation, don't use this `alloc_id`.
                let size = ecx.get_alloc_info(alloc_id).0;
                if offset <= size.bytes() { Some(alloc_id) } else { None }
            }
        }?;

        // We only use this provenance if it has been exposed, *and* is still live.
        if global_state.exposed.contains(&alloc_id) {
            let (_size, _align, kind) = ecx.get_alloc_info(alloc_id);
            match kind {
                AllocKind::LiveData | AllocKind::Function | AllocKind::VTable => {
                    return Some(alloc_id);
                }
                AllocKind::Dead => {}
            }
        }

        None
    }

    pub fn expose_ptr(
        ecx: &mut MiriInterpCx<'mir, 'tcx>,
        alloc_id: AllocId,
        tag: BorTag,
    ) -> InterpResult<'tcx> {
        let global_state = ecx.machine.intptrcast.get_mut();
        // In strict mode, we don't need this, so we can save some cycles by not tracking it.
        if global_state.provenance_mode != ProvenanceMode::Strict {
            trace!("Exposing allocation id {alloc_id:?}");
            global_state.exposed.insert(alloc_id);
            if ecx.machine.borrow_tracker.is_some() {
                ecx.expose_tag(alloc_id, tag)?;
            }
        }
        Ok(())
    }

    pub fn ptr_from_addr_transmute(
        _ecx: &MiriInterpCx<'mir, 'tcx>,
        addr: u64,
    ) -> Pointer<Option<Provenance>> {
        trace!("Transmuting {:#x} to a pointer", addr);

        // We consider transmuted pointers to be "invalid" (`None` provenance).
        Pointer::new(None, Size::from_bytes(addr))
    }

    pub fn ptr_from_addr_cast(
        ecx: &MiriInterpCx<'mir, 'tcx>,
        addr: u64,
    ) -> InterpResult<'tcx, Pointer<Option<Provenance>>> {
        trace!("Casting {:#x} to a pointer", addr);

        let global_state = ecx.machine.intptrcast.borrow();

        match global_state.provenance_mode {
            ProvenanceMode::Default => {
                // The first time this happens at a particular location, print a warning.
                thread_local! {
                    // `Span` is non-`Send`, so we use a thread-local instead.
                    static PAST_WARNINGS: RefCell<FxHashSet<Span>> = RefCell::default();
                }
                PAST_WARNINGS.with_borrow_mut(|past_warnings| {
                    let first = past_warnings.is_empty();
                    if past_warnings.insert(ecx.cur_span()) {
                        // Newly inserted, so first time we see this span.
                        ecx.emit_diagnostic(NonHaltingDiagnostic::Int2Ptr { details: first });
                    }
                });
            }
            ProvenanceMode::Strict => {
                throw_machine_stop!(TerminationInfo::Int2PtrWithStrictProvenance);
            }
            ProvenanceMode::Permissive => {}
        }

        // This is how wildcard pointers are born.
        Ok(Pointer::new(Some(Provenance::Wildcard), Size::from_bytes(addr)))
    }

    fn alloc_base_addr(
        ecx: &MiriInterpCx<'mir, 'tcx>,
        alloc_id: AllocId,
    ) -> InterpResult<'tcx, u64> {
        let mut global_state = ecx.machine.intptrcast.borrow_mut();
        let global_state = &mut *global_state;

        Ok(match global_state.base_addr.entry(alloc_id) {
            Entry::Occupied(entry) => *entry.get(),
            Entry::Vacant(entry) => {
                // There is nothing wrong with a raw pointer being cast to an integer only after
                // it became dangling.  Hence we allow dead allocations.
                let (size, align, _kind) = ecx.get_alloc_info(alloc_id);

                // This allocation does not have a base address yet, pick one.
                // Leave some space to the previous allocation, to give it some chance to be less aligned.
                let slack = {
                    let mut rng = ecx.machine.rng.borrow_mut();
                    // This means that `(global_state.next_base_addr + slack) % 16` is uniformly distributed.
                    rng.gen_range(0..16)
                };
                // From next_base_addr + slack, round up to adjust for alignment.
                let base_addr = global_state
                    .next_base_addr
                    .checked_add(slack)
                    .ok_or_else(|| err_exhaust!(AddressSpaceFull))?;
                let base_addr = Self::align_addr(base_addr, align.bytes());
                entry.insert(base_addr);
                trace!(
                    "Assigning base address {:#x} to allocation {:?} (size: {}, align: {}, slack: {})",
                    base_addr,
                    alloc_id,
                    size.bytes(),
                    align.bytes(),
                    slack,
                );

                // Remember next base address.  If this allocation is zero-sized, leave a gap
                // of at least 1 to avoid two allocations having the same base address.
                // (The logic in `alloc_id_from_addr` assumes unique addresses, and different
                // function/vtable pointers need to be distinguishable!)
                global_state.next_base_addr = base_addr
                    .checked_add(max(size.bytes(), 1))
                    .ok_or_else(|| err_exhaust!(AddressSpaceFull))?;
                // Even if `Size` didn't overflow, we might still have filled up the address space.
                if global_state.next_base_addr > ecx.target_usize_max() {
                    throw_exhaust!(AddressSpaceFull);
                }
                // Given that `next_base_addr` increases in each allocation, pushing the
                // corresponding tuple keeps `int_to_ptr_map` sorted
                global_state.int_to_ptr_map.push((base_addr, alloc_id));

                base_addr
            }
        })
    }

    /// Convert a relative (tcx) pointer to an absolute address.
    pub fn rel_ptr_to_addr(
        ecx: &MiriInterpCx<'mir, 'tcx>,
        ptr: Pointer<AllocId>,
    ) -> InterpResult<'tcx, u64> {
        let (alloc_id, offset) = ptr.into_parts(); // offset is relative (AllocId provenance)
        let base_addr = GlobalStateInner::alloc_base_addr(ecx, alloc_id)?;

        // Add offset with the right kind of pointer-overflowing arithmetic.
        let dl = ecx.data_layout();
        Ok(dl.overflowing_offset(base_addr, offset.bytes()).0)
    }

    /// When a pointer is used for a memory access, this computes where in which allocation the
    /// access is going.
    pub fn abs_ptr_to_rel(
        ecx: &MiriInterpCx<'mir, 'tcx>,
        ptr: Pointer<Provenance>,
    ) -> Option<(AllocId, Size)> {
        let (tag, addr) = ptr.into_parts(); // addr is absolute (Tag provenance)

        let alloc_id = if let Provenance::Concrete { alloc_id, .. } = tag {
            alloc_id
        } else {
            // A wildcard pointer.
            GlobalStateInner::alloc_id_from_addr(ecx, addr.bytes())?
        };

        // This cannot fail: since we already have a pointer with that provenance, rel_ptr_to_addr
        // must have been called in the past.
        let base_addr = GlobalStateInner::alloc_base_addr(ecx, alloc_id).unwrap();

        // Wrapping "addr - base_addr"
        let dl = ecx.data_layout();
        #[allow(clippy::cast_possible_wrap)] // we want to wrap here
        let neg_base_addr = (base_addr as i64).wrapping_neg();
        Some((
            alloc_id,
            Size::from_bytes(dl.overflowing_signed_offset(addr.bytes(), neg_base_addr).0),
        ))
    }

    /// Shifts `addr` to make it aligned with `align` by rounding `addr` to the smallest multiple
    /// of `align` that is larger or equal to `addr`
    fn align_addr(addr: u64, align: u64) -> u64 {
        match addr % align {
            0 => addr,
            rem => addr.checked_add(align).unwrap() - rem,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_align_addr() {
        assert_eq!(GlobalStateInner::align_addr(37, 4), 40);
        assert_eq!(GlobalStateInner::align_addr(44, 4), 44);
    }
}