1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
//! Trait Resolution. See the [rustc dev guide] for more information on how this works.
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html

pub mod query;
pub mod select;
pub mod solve;
pub mod specialization_graph;
mod structural_impls;
pub mod util;

use crate::infer::canonical::Canonical;
use crate::mir::ConstraintCategory;
use crate::ty::abstract_const::NotConstEvaluatable;
use crate::ty::GenericArgsRef;
use crate::ty::{self, AdtKind, Ty};

use rustc_data_structures::sync::Lrc;
use rustc_errors::{Applicability, Diagnostic};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_span::def_id::{LocalDefId, CRATE_DEF_ID};
use rustc_span::symbol::Symbol;
use rustc_span::{Span, DUMMY_SP};
use smallvec::SmallVec;

use std::borrow::Cow;
use std::hash::{Hash, Hasher};

pub use self::select::{EvaluationCache, EvaluationResult, OverflowError, SelectionCache};

pub use self::ObligationCauseCode::*;

/// Depending on the stage of compilation, we want projection to be
/// more or less conservative.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, HashStable, Encodable, Decodable)]
pub enum Reveal {
    /// At type-checking time, we refuse to project any associated
    /// type that is marked `default`. Non-`default` ("final") types
    /// are always projected. This is necessary in general for
    /// soundness of specialization. However, we *could* allow
    /// projections in fully-monomorphic cases. We choose not to,
    /// because we prefer for `default type` to force the type
    /// definition to be treated abstractly by any consumers of the
    /// impl. Concretely, that means that the following example will
    /// fail to compile:
    ///
    /// ```compile_fail,E0308
    /// #![feature(specialization)]
    /// trait Assoc {
    ///     type Output;
    /// }
    ///
    /// impl<T> Assoc for T {
    ///     default type Output = bool;
    /// }
    ///
    /// fn main() {
    ///     let x: <() as Assoc>::Output = true;
    /// }
    /// ```
    ///
    /// We also do not reveal the hidden type of opaque types during
    /// type-checking.
    UserFacing,

    /// At codegen time, all monomorphic projections will succeed.
    /// Also, `impl Trait` is normalized to the concrete type,
    /// which has to be already collected by type-checking.
    ///
    /// NOTE: as `impl Trait`'s concrete type should *never*
    /// be observable directly by the user, `Reveal::All`
    /// should not be used by checks which may expose
    /// type equality or type contents to the user.
    /// There are some exceptions, e.g., around auto traits and
    /// transmute-checking, which expose some details, but
    /// not the whole concrete type of the `impl Trait`.
    All,
}

/// The reason why we incurred this obligation; used for error reporting.
///
/// Non-misc `ObligationCauseCode`s are stored on the heap. This gives the
/// best trade-off between keeping the type small (which makes copies cheaper)
/// while not doing too many heap allocations.
///
/// We do not want to intern this as there are a lot of obligation causes which
/// only live for a short period of time.
#[derive(Clone, Debug, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)]
#[derive(TypeVisitable, TypeFoldable)]
pub struct ObligationCause<'tcx> {
    pub span: Span,

    /// The ID of the fn body that triggered this obligation. This is
    /// used for region obligations to determine the precise
    /// environment in which the region obligation should be evaluated
    /// (in particular, closures can add new assumptions). See the
    /// field `region_obligations` of the `FulfillmentContext` for more
    /// information.
    pub body_id: LocalDefId,

    code: InternedObligationCauseCode<'tcx>,
}

// This custom hash function speeds up hashing for `Obligation` deduplication
// greatly by skipping the `code` field, which can be large and complex. That
// shouldn't affect hash quality much since there are several other fields in
// `Obligation` which should be unique enough, especially the predicate itself
// which is hashed as an interned pointer. See #90996.
impl Hash for ObligationCause<'_> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.body_id.hash(state);
        self.span.hash(state);
    }
}

impl<'tcx> ObligationCause<'tcx> {
    #[inline]
    pub fn new(
        span: Span,
        body_id: LocalDefId,
        code: ObligationCauseCode<'tcx>,
    ) -> ObligationCause<'tcx> {
        ObligationCause { span, body_id, code: code.into() }
    }

    pub fn misc(span: Span, body_id: LocalDefId) -> ObligationCause<'tcx> {
        ObligationCause::new(span, body_id, MiscObligation)
    }

    #[inline(always)]
    pub fn dummy() -> ObligationCause<'tcx> {
        ObligationCause::dummy_with_span(DUMMY_SP)
    }

    #[inline(always)]
    pub fn dummy_with_span(span: Span) -> ObligationCause<'tcx> {
        ObligationCause { span, body_id: CRATE_DEF_ID, code: Default::default() }
    }

    pub fn span(&self) -> Span {
        match *self.code() {
            ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
                arm_span,
                ..
            }) => arm_span,
            _ => self.span,
        }
    }

    #[inline]
    pub fn code(&self) -> &ObligationCauseCode<'tcx> {
        &self.code
    }

    pub fn map_code(
        &mut self,
        f: impl FnOnce(InternedObligationCauseCode<'tcx>) -> ObligationCauseCode<'tcx>,
    ) {
        self.code = f(std::mem::take(&mut self.code)).into();
    }

    pub fn derived_cause(
        mut self,
        parent_trait_pred: ty::PolyTraitPredicate<'tcx>,
        variant: impl FnOnce(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
    ) -> ObligationCause<'tcx> {
        /*!
         * Creates a cause for obligations that are derived from
         * `obligation` by a recursive search (e.g., for a builtin
         * bound, or eventually a `auto trait Foo`). If `obligation`
         * is itself a derived obligation, this is just a clone, but
         * otherwise we create a "derived obligation" cause so as to
         * keep track of the original root obligation for error
         * reporting.
         */

        // NOTE(flaper87): As of now, it keeps track of the whole error
        // chain. Ideally, we should have a way to configure this either
        // by using -Z verbose or just a CLI argument.
        self.code =
            variant(DerivedObligationCause { parent_trait_pred, parent_code: self.code }).into();
        self
    }

    pub fn to_constraint_category(&self) -> ConstraintCategory<'tcx> {
        match self.code() {
            MatchImpl(cause, _) => cause.to_constraint_category(),
            AscribeUserTypeProvePredicate(predicate_span) => {
                ConstraintCategory::Predicate(*predicate_span)
            }
            _ => ConstraintCategory::BoringNoLocation,
        }
    }
}

#[derive(Clone, Debug, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)]
#[derive(TypeVisitable, TypeFoldable)]
pub struct UnifyReceiverContext<'tcx> {
    pub assoc_item: ty::AssocItem,
    pub param_env: ty::ParamEnv<'tcx>,
    pub args: GenericArgsRef<'tcx>,
}

#[derive(Clone, PartialEq, Eq, Default, HashStable)]
#[derive(TypeVisitable, TypeFoldable, TyEncodable, TyDecodable)]
pub struct InternedObligationCauseCode<'tcx> {
    /// `None` for `ObligationCauseCode::MiscObligation` (a common case, occurs ~60% of
    /// the time). `Some` otherwise.
    code: Option<Lrc<ObligationCauseCode<'tcx>>>,
}

impl<'tcx> std::fmt::Debug for InternedObligationCauseCode<'tcx> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let cause: &ObligationCauseCode<'_> = self;
        cause.fmt(f)
    }
}

impl<'tcx> ObligationCauseCode<'tcx> {
    #[inline(always)]
    fn into(self) -> InternedObligationCauseCode<'tcx> {
        InternedObligationCauseCode {
            code: if let ObligationCauseCode::MiscObligation = self {
                None
            } else {
                Some(Lrc::new(self))
            },
        }
    }
}

impl<'tcx> std::ops::Deref for InternedObligationCauseCode<'tcx> {
    type Target = ObligationCauseCode<'tcx>;

    fn deref(&self) -> &Self::Target {
        self.code.as_deref().unwrap_or(&ObligationCauseCode::MiscObligation)
    }
}

#[derive(Clone, Debug, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)]
#[derive(TypeVisitable, TypeFoldable)]
pub enum ObligationCauseCode<'tcx> {
    /// Not well classified or should be obvious from the span.
    MiscObligation,

    /// A slice or array is WF only if `T: Sized`.
    SliceOrArrayElem,

    /// A tuple is WF only if its middle elements are `Sized`.
    TupleElem,

    /// This is the trait reference from the given projection.
    ProjectionWf(ty::AliasTy<'tcx>),

    /// Must satisfy all of the where-clause predicates of the
    /// given item.
    ItemObligation(DefId),

    /// Like `ItemObligation`, but carries the span of the
    /// predicate when it can be identified.
    BindingObligation(DefId, Span),

    /// Like `ItemObligation`, but carries the `HirId` of the
    /// expression that caused the obligation, and the `usize`
    /// indicates exactly which predicate it is in the list of
    /// instantiated predicates.
    ExprItemObligation(DefId, rustc_hir::HirId, usize),

    /// Combines `ExprItemObligation` and `BindingObligation`.
    ExprBindingObligation(DefId, Span, rustc_hir::HirId, usize),

    /// A type like `&'a T` is WF only if `T: 'a`.
    ReferenceOutlivesReferent(Ty<'tcx>),

    /// A type like `Box<Foo<'a> + 'b>` is WF only if `'b: 'a`.
    ObjectTypeBound(Ty<'tcx>, ty::Region<'tcx>),

    /// Obligation incurred due to a coercion.
    Coercion {
        source: Ty<'tcx>,
        target: Ty<'tcx>,
    },

    /// Various cases where expressions must be `Sized` / `Copy` / etc.
    /// `L = X` implies that `L` is `Sized`.
    AssignmentLhsSized,
    /// `(x1, .., xn)` must be `Sized`.
    TupleInitializerSized,
    /// `S { ... }` must be `Sized`.
    StructInitializerSized,
    /// Type of each variable must be `Sized`.
    VariableType(hir::HirId),
    /// Argument type must be `Sized`.
    SizedArgumentType(Option<Span>),
    /// Return type must be `Sized`.
    SizedReturnType,
    /// Yield type must be `Sized`.
    SizedYieldType,
    /// Inline asm operand type must be `Sized`.
    InlineAsmSized,
    /// Captured closure type must be `Sized`.
    SizedClosureCapture(LocalDefId),
    /// Types live across generator yields must be `Sized`.
    SizedGeneratorInterior(LocalDefId),
    /// `[expr; N]` requires `type_of(expr): Copy`.
    RepeatElementCopy {
        /// If element is a `const fn` we display a help message suggesting to move the
        /// function call to a new `const` item while saying that `T` doesn't implement `Copy`.
        is_const_fn: bool,
    },

    /// Types of fields (other than the last, except for packed structs) in a struct must be sized.
    FieldSized {
        adt_kind: AdtKind,
        span: Span,
        last: bool,
    },

    /// Constant expressions must be sized.
    ConstSized,

    /// `static` items must have `Sync` type.
    SharedStatic,

    BuiltinDerivedObligation(DerivedObligationCause<'tcx>),

    ImplDerivedObligation(Box<ImplDerivedObligationCause<'tcx>>),

    DerivedObligation(DerivedObligationCause<'tcx>),

    FunctionArgumentObligation {
        /// The node of the relevant argument in the function call.
        arg_hir_id: hir::HirId,
        /// The node of the function call.
        call_hir_id: hir::HirId,
        /// The obligation introduced by this argument.
        parent_code: InternedObligationCauseCode<'tcx>,
    },

    /// Error derived when matching traits/impls; see ObligationCause for more details
    CompareImplItemObligation {
        impl_item_def_id: LocalDefId,
        trait_item_def_id: DefId,
        kind: ty::AssocKind,
    },

    /// Checking that the bounds of a trait's associated type hold for a given impl
    CheckAssociatedTypeBounds {
        impl_item_def_id: LocalDefId,
        trait_item_def_id: DefId,
    },

    /// Checking that this expression can be assigned to its target.
    ExprAssignable,

    /// Computing common supertype in the arms of a match expression
    MatchExpressionArm(Box<MatchExpressionArmCause<'tcx>>),

    /// Type error arising from type checking a pattern against an expected type.
    Pattern {
        /// The span of the scrutinee or type expression which caused the `root_ty` type.
        span: Option<Span>,
        /// The root expected type induced by a scrutinee or type expression.
        root_ty: Ty<'tcx>,
        /// Whether the `Span` came from an expression or a type expression.
        origin_expr: bool,
    },

    /// Constants in patterns must have `Structural` type.
    ConstPatternStructural,

    /// Computing common supertype in an if expression
    IfExpression(Box<IfExpressionCause<'tcx>>),

    /// Computing common supertype of an if expression with no else counter-part
    IfExpressionWithNoElse,

    /// `main` has wrong type
    MainFunctionType,

    /// `start` has wrong type
    StartFunctionType,

    /// language function has wrong type
    LangFunctionType(Symbol),

    /// Intrinsic has wrong type
    IntrinsicType,

    /// A let else block does not diverge
    LetElse,

    /// Method receiver
    MethodReceiver,

    UnifyReceiver(Box<UnifyReceiverContext<'tcx>>),

    /// `return` with no expression
    ReturnNoExpression,

    /// `return` with an expression
    ReturnValue(hir::HirId),

    /// Return type of this function
    ReturnType,

    /// Opaque return type of this function
    OpaqueReturnType(Option<(Ty<'tcx>, Span)>),

    /// Block implicit return
    BlockTailExpression(hir::HirId, hir::MatchSource),

    /// #[feature(trivial_bounds)] is not enabled
    TrivialBound,

    /// If `X` is the concrete type of an opaque type `impl Y`, then `X` must implement `Y`
    OpaqueType,

    AwaitableExpr(Option<hir::HirId>),

    ForLoopIterator,

    QuestionMark,

    /// Well-formed checking. If a `WellFormedLoc` is provided,
    /// then it will be used to perform HIR-based wf checking
    /// after an error occurs, in order to generate a more precise error span.
    /// This is purely for diagnostic purposes - it is always
    /// correct to use `MiscObligation` instead, or to specify
    /// `WellFormed(None)`
    WellFormed(Option<WellFormedLoc>),

    /// From `match_impl`. The cause for us having to match an impl, and the DefId we are matching against.
    MatchImpl(ObligationCause<'tcx>, DefId),

    BinOp {
        rhs_span: Option<Span>,
        is_lit: bool,
        output_ty: Option<Ty<'tcx>>,
    },

    AscribeUserTypeProvePredicate(Span),

    RustCall,

    /// Obligations to prove that a `std::ops::Drop` impl is not stronger than
    /// the ADT it's being implemented for.
    DropImpl,

    /// Requirement for a `const N: Ty` to implement `Ty: ConstParamTy`
    ConstParam(Ty<'tcx>),

    /// Obligations emitted during the normalization of a weak type alias.
    TypeAlias(InternedObligationCauseCode<'tcx>, Span, DefId),
}

/// The 'location' at which we try to perform HIR-based wf checking.
/// This information is used to obtain an `hir::Ty`, which
/// we can walk in order to obtain precise spans for any
/// 'nested' types (e.g. `Foo` in `Option<Foo>`).
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable, Encodable, Decodable)]
#[derive(TypeVisitable, TypeFoldable)]
pub enum WellFormedLoc {
    /// Use the type of the provided definition.
    Ty(LocalDefId),
    /// Use the type of the parameter of the provided function.
    /// We cannot use `hir::Param`, since the function may
    /// not have a body (e.g. a trait method definition)
    Param {
        /// The function to lookup the parameter in
        function: LocalDefId,
        /// The index of the parameter to use.
        /// Parameters are indexed from 0, with the return type
        /// being the last 'parameter'
        param_idx: u16,
    },
}

#[derive(Clone, Debug, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)]
#[derive(TypeVisitable, TypeFoldable)]
pub struct ImplDerivedObligationCause<'tcx> {
    pub derived: DerivedObligationCause<'tcx>,
    /// The `DefId` of the `impl` that gave rise to the `derived` obligation.
    /// If the `derived` obligation arose from a trait alias, which conceptually has a synthetic impl,
    /// then this will be the `DefId` of that trait alias. Care should therefore be taken to handle
    /// that exceptional case where appropriate.
    pub impl_or_alias_def_id: DefId,
    /// The index of the derived predicate in the parent impl's predicates.
    pub impl_def_predicate_index: Option<usize>,
    pub span: Span,
}

impl<'tcx> ObligationCauseCode<'tcx> {
    /// Returns the base obligation, ignoring derived obligations.
    pub fn peel_derives(&self) -> &Self {
        let mut base_cause = self;
        while let Some((parent_code, _)) = base_cause.parent() {
            base_cause = parent_code;
        }
        base_cause
    }

    pub fn parent(&self) -> Option<(&Self, Option<ty::PolyTraitPredicate<'tcx>>)> {
        match self {
            FunctionArgumentObligation { parent_code, .. } => Some((parent_code, None)),
            BuiltinDerivedObligation(derived)
            | DerivedObligation(derived)
            | ImplDerivedObligation(box ImplDerivedObligationCause { derived, .. }) => {
                Some((&derived.parent_code, Some(derived.parent_trait_pred)))
            }
            _ => None,
        }
    }

    pub fn peel_match_impls(&self) -> &Self {
        match self {
            MatchImpl(cause, _) => cause.code(),
            _ => self,
        }
    }
}

// `ObligationCauseCode` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
static_assert_size!(ObligationCauseCode<'_>, 48);

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum StatementAsExpression {
    CorrectType,
    NeedsBoxing,
}

#[derive(Clone, Debug, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)]
#[derive(TypeVisitable, TypeFoldable)]
pub struct MatchExpressionArmCause<'tcx> {
    pub arm_block_id: Option<hir::HirId>,
    pub arm_ty: Ty<'tcx>,
    pub arm_span: Span,
    pub prior_arm_block_id: Option<hir::HirId>,
    pub prior_arm_ty: Ty<'tcx>,
    pub prior_arm_span: Span,
    pub scrut_span: Span,
    pub source: hir::MatchSource,
    pub prior_arms: Vec<Span>,
    pub opt_suggest_box_span: Option<Span>,
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[derive(TypeFoldable, TypeVisitable, HashStable, TyEncodable, TyDecodable)]
pub struct IfExpressionCause<'tcx> {
    pub then_id: hir::HirId,
    pub else_id: hir::HirId,
    pub then_ty: Ty<'tcx>,
    pub else_ty: Ty<'tcx>,
    pub outer_span: Option<Span>,
    pub opt_suggest_box_span: Option<Span>,
}

#[derive(Clone, Debug, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)]
#[derive(TypeVisitable, TypeFoldable)]
pub struct DerivedObligationCause<'tcx> {
    /// The trait predicate of the parent obligation that led to the
    /// current obligation. Note that only trait obligations lead to
    /// derived obligations, so we just store the trait predicate here
    /// directly.
    pub parent_trait_pred: ty::PolyTraitPredicate<'tcx>,

    /// The parent trait had this cause.
    pub parent_code: InternedObligationCauseCode<'tcx>,
}

#[derive(Clone, Debug, TypeVisitable)]
pub enum SelectionError<'tcx> {
    /// The trait is not implemented.
    Unimplemented,
    /// After a closure impl has selected, its "outputs" were evaluated
    /// (which for closures includes the "input" type params) and they
    /// didn't resolve. See `confirm_poly_trait_refs` for more.
    OutputTypeParameterMismatch(Box<SelectionOutputTypeParameterMismatch<'tcx>>),
    /// The trait pointed by `DefId` is not object safe.
    TraitNotObjectSafe(DefId),
    /// A given constant couldn't be evaluated.
    NotConstEvaluatable(NotConstEvaluatable),
    /// Exceeded the recursion depth during type projection.
    Overflow(OverflowError),
    /// Signaling that an error has already been emitted, to avoid
    /// multiple errors being shown.
    ErrorReporting,
    /// Computing an opaque type's hidden type caused an error (e.g. a cycle error).
    /// We can thus not know whether the hidden type implements an auto trait, so
    /// we should not presume anything about it.
    OpaqueTypeAutoTraitLeakageUnknown(DefId),
}

#[derive(Clone, Debug, TypeVisitable)]
pub struct SelectionOutputTypeParameterMismatch<'tcx> {
    pub found_trait_ref: ty::PolyTraitRef<'tcx>,
    pub expected_trait_ref: ty::PolyTraitRef<'tcx>,
    pub terr: ty::error::TypeError<'tcx>,
}

/// When performing resolution, it is typically the case that there
/// can be one of three outcomes:
///
/// - `Ok(Some(r))`: success occurred with result `r`
/// - `Ok(None)`: could not definitely determine anything, usually due
///   to inconclusive type inference.
/// - `Err(e)`: error `e` occurred
pub type SelectionResult<'tcx, T> = Result<Option<T>, SelectionError<'tcx>>;

/// Given the successful resolution of an obligation, the `ImplSource`
/// indicates where the impl comes from.
///
/// For example, the obligation may be satisfied by a specific impl (case A),
/// or it may be relative to some bound that is in scope (case B).
///
/// ```ignore (illustrative)
/// impl<T:Clone> Clone<T> for Option<T> { ... } // Impl_1
/// impl<T:Clone> Clone<T> for Box<T> { ... }    // Impl_2
/// impl Clone for i32 { ... }                   // Impl_3
///
/// fn foo<T: Clone>(concrete: Option<Box<i32>>, param: T, mixed: Option<T>) {
///     // Case A: ImplSource points at a specific impl. Only possible when
///     // type is concretely known. If the impl itself has bounded
///     // type parameters, ImplSource will carry resolutions for those as well:
///     concrete.clone(); // ImplSource(Impl_1, [ImplSource(Impl_2, [ImplSource(Impl_3)])])
///
///     // Case B: ImplSource must be provided by caller. This applies when
///     // type is a type parameter.
///     param.clone();    // ImplSource::Param
///
///     // Case C: A mix of cases A and B.
///     mixed.clone();    // ImplSource(Impl_1, [ImplSource::Param])
/// }
/// ```
///
/// ### The type parameter `N`
///
/// See explanation on `ImplSourceUserDefinedData`.
#[derive(Clone, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
#[derive(TypeFoldable, TypeVisitable)]
pub enum ImplSource<'tcx, N> {
    /// ImplSource identifying a particular impl.
    UserDefined(ImplSourceUserDefinedData<'tcx, N>),

    /// Successful resolution to an obligation provided by the caller
    /// for some type parameter. The `Vec<N>` represents the
    /// obligations incurred from normalizing the where-clause (if
    /// any).
    Param(Vec<N>),

    /// Successful resolution for a builtin impl.
    Builtin(BuiltinImplSource, Vec<N>),
}

impl<'tcx, N> ImplSource<'tcx, N> {
    pub fn nested_obligations(self) -> Vec<N> {
        match self {
            ImplSource::UserDefined(i) => i.nested,
            ImplSource::Param(n) | ImplSource::Builtin(_, n) => n,
        }
    }

    pub fn borrow_nested_obligations(&self) -> &[N] {
        match self {
            ImplSource::UserDefined(i) => &i.nested,
            ImplSource::Param(n) | ImplSource::Builtin(_, n) => &n,
        }
    }

    pub fn borrow_nested_obligations_mut(&mut self) -> &mut [N] {
        match self {
            ImplSource::UserDefined(i) => &mut i.nested,
            ImplSource::Param(n) | ImplSource::Builtin(_, n) => n,
        }
    }

    pub fn map<M, F>(self, f: F) -> ImplSource<'tcx, M>
    where
        F: FnMut(N) -> M,
    {
        match self {
            ImplSource::UserDefined(i) => ImplSource::UserDefined(ImplSourceUserDefinedData {
                impl_def_id: i.impl_def_id,
                args: i.args,
                nested: i.nested.into_iter().map(f).collect(),
            }),
            ImplSource::Param(n) => ImplSource::Param(n.into_iter().map(f).collect()),
            ImplSource::Builtin(source, n) => {
                ImplSource::Builtin(source, n.into_iter().map(f).collect())
            }
        }
    }
}

/// Identifies a particular impl in the source, along with a set of
/// substitutions from the impl's type/lifetime parameters. The
/// `nested` vector corresponds to the nested obligations attached to
/// the impl's type parameters.
///
/// The type parameter `N` indicates the type used for "nested
/// obligations" that are required by the impl. During type-check, this
/// is `Obligation`, as one might expect. During codegen, however, this
/// is `()`, because codegen only requires a shallow resolution of an
/// impl, and nested obligations are satisfied later.
#[derive(Clone, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
#[derive(TypeFoldable, TypeVisitable)]
pub struct ImplSourceUserDefinedData<'tcx, N> {
    pub impl_def_id: DefId,
    pub args: GenericArgsRef<'tcx>,
    pub nested: Vec<N>,
}

#[derive(Copy, Clone, PartialEq, Eq, TyEncodable, TyDecodable, HashStable, Debug)]
pub enum BuiltinImplSource {
    /// Some builtin impl we don't need to differentiate. This should be used
    /// unless more specific information is necessary.
    Misc,
    /// A builtin impl for trait objects.
    ///
    /// The vtable is formed by concatenating together the method lists of
    /// the base object trait and all supertraits, pointers to supertrait vtable will
    /// be provided when necessary; this is the start of `upcast_trait_ref`'s methods
    /// in that vtable.
    Object { vtable_base: usize },
    /// The vtable is formed by concatenating together the method lists of
    /// the base object trait and all supertraits, pointers to supertrait vtable will
    /// be provided when necessary; this is the position of `upcast_trait_ref`'s vtable
    /// within that vtable.
    TraitUpcasting { vtable_vptr_slot: Option<usize> },
    /// Unsizing a tuple like `(A, B, ..., X)` to `(A, B, ..., Y)` if `X` unsizes to `Y`.
    ///
    /// This needs to be a separate variant as it is still unstable and we need to emit
    /// a feature error when using it on stable.
    TupleUnsizing,
}

TrivialTypeTraversalImpls! { BuiltinImplSource }

#[derive(Clone, Debug, PartialEq, Eq, Hash, HashStable, PartialOrd, Ord)]
pub enum ObjectSafetyViolation {
    /// `Self: Sized` declared on the trait.
    SizedSelf(SmallVec<[Span; 1]>),

    /// Supertrait reference references `Self` an in illegal location
    /// (e.g., `trait Foo : Bar<Self>`).
    SupertraitSelf(SmallVec<[Span; 1]>),

    // Supertrait has a non-lifetime `for<T>` binder.
    SupertraitNonLifetimeBinder(SmallVec<[Span; 1]>),

    /// Method has something illegal.
    Method(Symbol, MethodViolationCode, Span),

    /// Associated const.
    AssocConst(Symbol, Span),

    /// GAT
    GAT(Symbol, Span),
}

impl ObjectSafetyViolation {
    pub fn error_msg(&self) -> Cow<'static, str> {
        match self {
            ObjectSafetyViolation::SizedSelf(_) => "it requires `Self: Sized`".into(),
            ObjectSafetyViolation::SupertraitSelf(ref spans) => {
                if spans.iter().any(|sp| *sp != DUMMY_SP) {
                    "it uses `Self` as a type parameter".into()
                } else {
                    "it cannot use `Self` as a type parameter in a supertrait or `where`-clause"
                        .into()
                }
            }
            ObjectSafetyViolation::SupertraitNonLifetimeBinder(_) => {
                "where clause cannot reference non-lifetime `for<...>` variables".into()
            }
            ObjectSafetyViolation::Method(name, MethodViolationCode::StaticMethod(_), _) => {
                format!("associated function `{name}` has no `self` parameter").into()
            }
            ObjectSafetyViolation::Method(
                name,
                MethodViolationCode::ReferencesSelfInput(_),
                DUMMY_SP,
            ) => format!("method `{name}` references the `Self` type in its parameters").into(),
            ObjectSafetyViolation::Method(name, MethodViolationCode::ReferencesSelfInput(_), _) => {
                format!("method `{name}` references the `Self` type in this parameter").into()
            }
            ObjectSafetyViolation::Method(name, MethodViolationCode::ReferencesSelfOutput, _) => {
                format!("method `{name}` references the `Self` type in its return type").into()
            }
            ObjectSafetyViolation::Method(
                name,
                MethodViolationCode::ReferencesImplTraitInTrait(_),
                _,
            ) => {
                format!("method `{name}` references an `impl Trait` type in its return type").into()
            }
            ObjectSafetyViolation::Method(name, MethodViolationCode::AsyncFn, _) => {
                format!("method `{name}` is `async`").into()
            }
            ObjectSafetyViolation::Method(
                name,
                MethodViolationCode::WhereClauseReferencesSelf,
                _,
            ) => format!("method `{name}` references the `Self` type in its `where` clause").into(),
            ObjectSafetyViolation::Method(name, MethodViolationCode::Generic, _) => {
                format!("method `{name}` has generic type parameters").into()
            }
            ObjectSafetyViolation::Method(
                name,
                MethodViolationCode::UndispatchableReceiver(_),
                _,
            ) => format!("method `{name}`'s `self` parameter cannot be dispatched on").into(),
            ObjectSafetyViolation::AssocConst(name, DUMMY_SP) => {
                format!("it contains associated `const` `{name}`").into()
            }
            ObjectSafetyViolation::AssocConst(..) => "it contains this associated `const`".into(),
            ObjectSafetyViolation::GAT(name, _) => {
                format!("it contains the generic associated type `{name}`").into()
            }
        }
    }

    pub fn solution(&self, err: &mut Diagnostic) {
        match self {
            ObjectSafetyViolation::SizedSelf(_)
            | ObjectSafetyViolation::SupertraitSelf(_)
            | ObjectSafetyViolation::SupertraitNonLifetimeBinder(..) => {}
            ObjectSafetyViolation::Method(
                name,
                MethodViolationCode::StaticMethod(Some((add_self_sugg, make_sized_sugg))),
                _,
            ) => {
                err.span_suggestion(
                    add_self_sugg.1,
                    format!(
                        "consider turning `{name}` into a method by giving it a `&self` argument"
                    ),
                    add_self_sugg.0.to_string(),
                    Applicability::MaybeIncorrect,
                );
                err.span_suggestion(
                    make_sized_sugg.1,
                    format!(
                        "alternatively, consider constraining `{name}` so it does not apply to \
                             trait objects"
                    ),
                    make_sized_sugg.0.to_string(),
                    Applicability::MaybeIncorrect,
                );
            }
            ObjectSafetyViolation::Method(
                name,
                MethodViolationCode::UndispatchableReceiver(Some(span)),
                _,
            ) => {
                err.span_suggestion(
                    *span,
                    format!("consider changing method `{name}`'s `self` parameter to be `&self`"),
                    "&Self",
                    Applicability::MachineApplicable,
                );
            }
            ObjectSafetyViolation::AssocConst(name, _)
            | ObjectSafetyViolation::GAT(name, _)
            | ObjectSafetyViolation::Method(name, ..) => {
                err.help(format!("consider moving `{name}` to another trait"));
            }
        }
    }

    pub fn spans(&self) -> SmallVec<[Span; 1]> {
        // When `span` comes from a separate crate, it'll be `DUMMY_SP`. Treat it as `None` so
        // diagnostics use a `note` instead of a `span_label`.
        match self {
            ObjectSafetyViolation::SupertraitSelf(spans)
            | ObjectSafetyViolation::SizedSelf(spans)
            | ObjectSafetyViolation::SupertraitNonLifetimeBinder(spans) => spans.clone(),
            ObjectSafetyViolation::AssocConst(_, span)
            | ObjectSafetyViolation::GAT(_, span)
            | ObjectSafetyViolation::Method(_, _, span)
                if *span != DUMMY_SP =>
            {
                smallvec![*span]
            }
            _ => smallvec![],
        }
    }
}

/// Reasons a method might not be object-safe.
#[derive(Clone, Debug, PartialEq, Eq, Hash, HashStable, PartialOrd, Ord)]
pub enum MethodViolationCode {
    /// e.g., `fn foo()`
    StaticMethod(Option<(/* add &self */ (String, Span), /* add Self: Sized */ (String, Span))>),

    /// e.g., `fn foo(&self, x: Self)`
    ReferencesSelfInput(Option<Span>),

    /// e.g., `fn foo(&self) -> Self`
    ReferencesSelfOutput,

    /// e.g., `fn foo(&self) -> impl Sized`
    ReferencesImplTraitInTrait(Span),

    /// e.g., `async fn foo(&self)`
    AsyncFn,

    /// e.g., `fn foo(&self) where Self: Clone`
    WhereClauseReferencesSelf,

    /// e.g., `fn foo<A>()`
    Generic,

    /// the method's receiver (`self` argument) can't be dispatched on
    UndispatchableReceiver(Option<Span>),
}

/// These are the error cases for `codegen_select_candidate`.
#[derive(Copy, Clone, Debug, Hash, HashStable, Encodable, Decodable)]
pub enum CodegenObligationError {
    /// Ambiguity can happen when monomorphizing during trans
    /// expands to some humongous type that never occurred
    /// statically -- this humongous type can then overflow,
    /// leading to an ambiguous result. So report this as an
    /// overflow bug, since I believe this is the only case
    /// where ambiguity can result.
    Ambiguity,
    /// This can trigger when we probe for the source of a `'static` lifetime requirement
    /// on a trait object: `impl Foo for dyn Trait {}` has an implicit `'static` bound.
    /// This can also trigger when we have a global bound that is not actually satisfied,
    /// but was included during typeck due to the trivial_bounds feature.
    Unimplemented,
    FulfillmentError,
}

#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, HashStable, TypeFoldable, TypeVisitable)]
pub enum DefiningAnchor {
    /// `DefId` of the item.
    Bind(LocalDefId),
    /// When opaque types are not resolved, we `Bubble` up, meaning
    /// return the opaque/hidden type pair from query, for caller of query to handle it.
    Bubble,
    /// Used to catch type mismatch errors when handling opaque types.
    Error,
}