1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
//! Checking that constant values used in types can be successfully evaluated.
//!
//! For concrete constants, this is fairly simple as we can just try and evaluate it.
//!
//! When dealing with polymorphic constants, for example `std::mem::size_of::<T>() - 1`,
//! this is not as easy.
//!
//! In this case we try to build an abstract representation of this constant using
//! `thir_abstract_const` which can then be checked for structural equality with other
//! generic constants mentioned in the `caller_bounds` of the current environment.
use rustc_hir::def::DefKind;
use rustc_infer::infer::InferCtxt;
use rustc_middle::mir::interpret::ErrorHandled;

use rustc_middle::traits::ObligationCause;
use rustc_middle::ty::abstract_const::NotConstEvaluatable;
use rustc_middle::ty::{self, TyCtxt, TypeVisitable, TypeVisitableExt, TypeVisitor};

use rustc_span::Span;
use std::ops::ControlFlow;

use crate::traits::ObligationCtxt;

/// Check if a given constant can be evaluated.
#[instrument(skip(infcx), level = "debug")]
pub fn is_const_evaluatable<'tcx>(
    infcx: &InferCtxt<'tcx>,
    unexpanded_ct: ty::Const<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    span: Span,
) -> Result<(), NotConstEvaluatable> {
    let tcx = infcx.tcx;
    match tcx.expand_abstract_consts(unexpanded_ct).kind() {
        ty::ConstKind::Unevaluated(_) | ty::ConstKind::Expr(_) => (),
        ty::ConstKind::Param(_)
        | ty::ConstKind::Bound(_, _)
        | ty::ConstKind::Placeholder(_)
        | ty::ConstKind::Value(_)
        | ty::ConstKind::Error(_) => return Ok(()),
        ty::ConstKind::Infer(_) => return Err(NotConstEvaluatable::MentionsInfer),
    };

    if tcx.features().generic_const_exprs {
        let ct = tcx.expand_abstract_consts(unexpanded_ct);

        let is_anon_ct = if let ty::ConstKind::Unevaluated(uv) = ct.kind() {
            tcx.def_kind(uv.def) == DefKind::AnonConst
        } else {
            false
        };

        if !is_anon_ct {
            if satisfied_from_param_env(tcx, infcx, ct, param_env) {
                return Ok(());
            }
            if ct.has_non_region_infer() {
                return Err(NotConstEvaluatable::MentionsInfer);
            } else if ct.has_non_region_param() {
                return Err(NotConstEvaluatable::MentionsParam);
            }
        }

        match unexpanded_ct.kind() {
            ty::ConstKind::Expr(_) => {
                // FIXME(generic_const_exprs): we have a `ConstKind::Expr` which is fully concrete, but
                // currently it is not possible to evaluate `ConstKind::Expr` so we are unable to tell if it
                // is evaluatable or not. For now we just ICE until this is implemented.
                Err(NotConstEvaluatable::Error(tcx.sess.delay_span_bug(
                    span,
                    "evaluating `ConstKind::Expr` is not currently supported",
                )))
            }
            ty::ConstKind::Unevaluated(uv) => {
                let concrete = infcx.const_eval_resolve(param_env, uv, Some(span));
                match concrete {
                    Err(ErrorHandled::TooGeneric(_)) => {
                        Err(NotConstEvaluatable::Error(infcx.tcx.sess.delay_span_bug(
                            span,
                            "Missing value for constant, but no error reported?",
                        )))
                    }
                    Err(ErrorHandled::Reported(e, _)) => Err(NotConstEvaluatable::Error(e.into())),
                    Ok(_) => Ok(()),
                }
            }
            _ => bug!("unexpected constkind in `is_const_evalautable: {unexpanded_ct:?}`"),
        }
    } else {
        let uv = match unexpanded_ct.kind() {
            ty::ConstKind::Unevaluated(uv) => uv,
            ty::ConstKind::Expr(_) => {
                bug!("`ConstKind::Expr` without `feature(generic_const_exprs)` enabled")
            }
            _ => bug!("unexpected constkind in `is_const_evalautable: {unexpanded_ct:?}`"),
        };

        // FIXME: We should only try to evaluate a given constant here if it is fully concrete
        // as we don't want to allow things like `[u8; std::mem::size_of::<*mut T>()]`.
        //
        // We previously did not check this, so we only emit a future compat warning if
        // const evaluation succeeds and the given constant is still polymorphic for now
        // and hopefully soon change this to an error.
        //
        // See #74595 for more details about this.
        let concrete = infcx.const_eval_resolve(param_env, uv, Some(span));
        match concrete {
            // If we're evaluating a generic foreign constant, under a nightly compiler while
            // the current crate does not enable `feature(generic_const_exprs)`, abort
            // compilation with a useful error.
            Err(_)
                if tcx.sess.is_nightly_build()
                    && satisfied_from_param_env(
                        tcx,
                        infcx,
                        tcx.expand_abstract_consts(unexpanded_ct),
                        param_env,
                    ) =>
            {
                tcx.sess
                    .struct_span_fatal(
                        // Slightly better span than just using `span` alone
                        if span == rustc_span::DUMMY_SP { tcx.def_span(uv.def) } else { span },
                        "failed to evaluate generic const expression",
                    )
                    .note("the crate this constant originates from uses `#![feature(generic_const_exprs)]`")
                    .span_suggestion_verbose(
                        rustc_span::DUMMY_SP,
                        "consider enabling this feature",
                        "#![feature(generic_const_exprs)]\n",
                        rustc_errors::Applicability::MaybeIncorrect,
                    )
                    .emit()
            }

            Err(ErrorHandled::TooGeneric(_)) => {
                let err = if uv.has_non_region_infer() {
                    NotConstEvaluatable::MentionsInfer
                } else if uv.has_non_region_param() {
                    NotConstEvaluatable::MentionsParam
                } else {
                    let guar = infcx
                        .tcx
                        .sess
                        .delay_span_bug(span, "Missing value for constant, but no error reported?");
                    NotConstEvaluatable::Error(guar)
                };

                Err(err)
            }
            Err(ErrorHandled::Reported(e, _)) => Err(NotConstEvaluatable::Error(e.into())),
            Ok(_) => Ok(()),
        }
    }
}

#[instrument(skip(infcx, tcx), level = "debug")]
fn satisfied_from_param_env<'tcx>(
    tcx: TyCtxt<'tcx>,
    infcx: &InferCtxt<'tcx>,
    ct: ty::Const<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
) -> bool {
    // Try to unify with each subtree in the AbstractConst to allow for
    // `N + 1` being const evaluatable even if theres only a `ConstEvaluatable`
    // predicate for `(N + 1) * 2`
    struct Visitor<'a, 'tcx> {
        ct: ty::Const<'tcx>,
        param_env: ty::ParamEnv<'tcx>,

        infcx: &'a InferCtxt<'tcx>,
        single_match: Option<Result<ty::Const<'tcx>, ()>>,
    }

    impl<'a, 'tcx> TypeVisitor<TyCtxt<'tcx>> for Visitor<'a, 'tcx> {
        type BreakTy = ();
        fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
            debug!("is_const_evaluatable: candidate={:?}", c);
            if self.infcx.probe(|_| {
                let ocx = ObligationCtxt::new(self.infcx);
                ocx.eq(&ObligationCause::dummy(), self.param_env, c.ty(), self.ct.ty()).is_ok()
                    && ocx.eq(&ObligationCause::dummy(), self.param_env, c, self.ct).is_ok()
                    && ocx.select_all_or_error().is_empty()
            }) {
                self.single_match = match self.single_match {
                    None => Some(Ok(c)),
                    Some(Ok(o)) if o == c => Some(Ok(c)),
                    Some(_) => Some(Err(())),
                };
            }

            if let ty::ConstKind::Expr(e) = c.kind() {
                e.visit_with(self)
            } else {
                // FIXME(generic_const_exprs): This doesn't recurse into `<T as Trait<U>>::ASSOC`'s args.
                // This is currently unobservable as `<T as Trait<{ U + 1 }>>::ASSOC` creates an anon const
                // with its own `ConstEvaluatable` bound in the param env which we will visit separately.
                //
                // If we start allowing directly writing `ConstKind::Expr` without an intermediate anon const
                // this will be incorrect. It might be worth investigating making `predicates_of` elaborate
                // all of the `ConstEvaluatable` bounds rather than having a visitor here.
                ControlFlow::Continue(())
            }
        }
    }

    let mut single_match: Option<Result<ty::Const<'tcx>, ()>> = None;

    for pred in param_env.caller_bounds() {
        match pred.kind().skip_binder() {
            ty::ClauseKind::ConstEvaluatable(ce) => {
                let b_ct = tcx.expand_abstract_consts(ce);
                let mut v = Visitor { ct, infcx, param_env, single_match };
                let _ = b_ct.visit_with(&mut v);

                single_match = v.single_match;
            }
            _ => {} // don't care
        }
    }

    if let Some(Ok(c)) = single_match {
        let ocx = ObligationCtxt::new(infcx);
        assert!(ocx.eq(&ObligationCause::dummy(), param_env, c.ty(), ct.ty()).is_ok());
        assert!(ocx.eq(&ObligationCause::dummy(), param_env, c, ct).is_ok());
        assert!(ocx.select_all_or_error().is_empty());
        return true;
    }

    debug!("is_const_evaluatable: no");
    false
}