1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
// Reference: RISC-V ELF psABI specification
// https://github.com/riscv/riscv-elf-psabi-doc
//
// Reference: Clang RISC-V ELF psABI lowering code
// https://github.com/llvm/llvm-project/blob/8e780252a7284be45cf1ba224cabd884847e8e92/clang/lib/CodeGen/TargetInfo.cpp#L9311-L9773

use crate::abi::call::{ArgAbi, ArgExtension, CastTarget, FnAbi, PassMode, Reg, RegKind, Uniform};
use crate::abi::{self, Abi, FieldsShape, HasDataLayout, Size, TyAbiInterface, TyAndLayout};
use crate::spec::HasTargetSpec;

#[derive(Copy, Clone)]
enum RegPassKind {
    Float(Reg),
    Integer(Reg),
    Unknown,
}

#[derive(Copy, Clone)]
enum FloatConv {
    FloatPair(Reg, Reg),
    Float(Reg),
    MixedPair(Reg, Reg),
}

#[derive(Copy, Clone)]
struct CannotUseFpConv;

fn is_riscv_aggregate<Ty>(arg: &ArgAbi<'_, Ty>) -> bool {
    match arg.layout.abi {
        Abi::Vector { .. } => true,
        _ => arg.layout.is_aggregate(),
    }
}

fn should_use_fp_conv_helper<'a, Ty, C>(
    cx: &C,
    arg_layout: &TyAndLayout<'a, Ty>,
    xlen: u64,
    flen: u64,
    field1_kind: &mut RegPassKind,
    field2_kind: &mut RegPassKind,
) -> Result<(), CannotUseFpConv>
where
    Ty: TyAbiInterface<'a, C> + Copy,
{
    match arg_layout.abi {
        Abi::Scalar(scalar) => match scalar.primitive() {
            abi::Int(..) | abi::Pointer(_) => {
                if arg_layout.size.bits() > xlen {
                    return Err(CannotUseFpConv);
                }
                match (*field1_kind, *field2_kind) {
                    (RegPassKind::Unknown, _) => {
                        *field1_kind = RegPassKind::Integer(Reg {
                            kind: RegKind::Integer,
                            size: arg_layout.size,
                        });
                    }
                    (RegPassKind::Float(_), RegPassKind::Unknown) => {
                        *field2_kind = RegPassKind::Integer(Reg {
                            kind: RegKind::Integer,
                            size: arg_layout.size,
                        });
                    }
                    _ => return Err(CannotUseFpConv),
                }
            }
            abi::F32 | abi::F64 => {
                if arg_layout.size.bits() > flen {
                    return Err(CannotUseFpConv);
                }
                match (*field1_kind, *field2_kind) {
                    (RegPassKind::Unknown, _) => {
                        *field1_kind =
                            RegPassKind::Float(Reg { kind: RegKind::Float, size: arg_layout.size });
                    }
                    (_, RegPassKind::Unknown) => {
                        *field2_kind =
                            RegPassKind::Float(Reg { kind: RegKind::Float, size: arg_layout.size });
                    }
                    _ => return Err(CannotUseFpConv),
                }
            }
        },
        Abi::Vector { .. } | Abi::Uninhabited => return Err(CannotUseFpConv),
        Abi::ScalarPair(..) | Abi::Aggregate { .. } => match arg_layout.fields {
            FieldsShape::Primitive => {
                unreachable!("aggregates can't have `FieldsShape::Primitive`")
            }
            FieldsShape::Union(_) => {
                if !arg_layout.is_zst() {
                    if arg_layout.is_transparent() {
                        let non_1zst_elem = arg_layout.non_1zst_field(cx).expect("not exactly one non-1-ZST field in non-ZST repr(transparent) union").1;
                        return should_use_fp_conv_helper(
                            cx,
                            &non_1zst_elem,
                            xlen,
                            flen,
                            field1_kind,
                            field2_kind,
                        );
                    }
                    return Err(CannotUseFpConv);
                }
            }
            FieldsShape::Array { count, .. } => {
                for _ in 0..count {
                    let elem_layout = arg_layout.field(cx, 0);
                    should_use_fp_conv_helper(
                        cx,
                        &elem_layout,
                        xlen,
                        flen,
                        field1_kind,
                        field2_kind,
                    )?;
                }
            }
            FieldsShape::Arbitrary { .. } => {
                match arg_layout.variants {
                    abi::Variants::Multiple { .. } => return Err(CannotUseFpConv),
                    abi::Variants::Single { .. } => (),
                }
                for i in arg_layout.fields.index_by_increasing_offset() {
                    let field = arg_layout.field(cx, i);
                    should_use_fp_conv_helper(cx, &field, xlen, flen, field1_kind, field2_kind)?;
                }
            }
        },
    }
    Ok(())
}

fn should_use_fp_conv<'a, Ty, C>(
    cx: &C,
    arg: &TyAndLayout<'a, Ty>,
    xlen: u64,
    flen: u64,
) -> Option<FloatConv>
where
    Ty: TyAbiInterface<'a, C> + Copy,
{
    let mut field1_kind = RegPassKind::Unknown;
    let mut field2_kind = RegPassKind::Unknown;
    if should_use_fp_conv_helper(cx, arg, xlen, flen, &mut field1_kind, &mut field2_kind).is_err() {
        return None;
    }
    match (field1_kind, field2_kind) {
        (RegPassKind::Integer(l), RegPassKind::Float(r)) => Some(FloatConv::MixedPair(l, r)),
        (RegPassKind::Float(l), RegPassKind::Integer(r)) => Some(FloatConv::MixedPair(l, r)),
        (RegPassKind::Float(l), RegPassKind::Float(r)) => Some(FloatConv::FloatPair(l, r)),
        (RegPassKind::Float(f), RegPassKind::Unknown) => Some(FloatConv::Float(f)),
        _ => None,
    }
}

fn classify_ret<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>, xlen: u64, flen: u64) -> bool
where
    Ty: TyAbiInterface<'a, C> + Copy,
{
    if let Some(conv) = should_use_fp_conv(cx, &arg.layout, xlen, flen) {
        match conv {
            FloatConv::Float(f) => {
                arg.cast_to(f);
            }
            FloatConv::FloatPair(l, r) => {
                arg.cast_to(CastTarget::pair(l, r));
            }
            FloatConv::MixedPair(l, r) => {
                arg.cast_to(CastTarget::pair(l, r));
            }
        }
        return false;
    }

    let total = arg.layout.size;

    // "Scalars wider than 2✕XLEN are passed by reference and are replaced in
    // the argument list with the address."
    // "Aggregates larger than 2✕XLEN bits are passed by reference and are
    // replaced in the argument list with the address, as are C++ aggregates
    // with nontrivial copy constructors, destructors, or vtables."
    if total.bits() > 2 * xlen {
        // We rely on the LLVM backend lowering code to lower passing a scalar larger than 2*XLEN.
        if is_riscv_aggregate(arg) {
            arg.make_indirect();
        }
        return true;
    }

    let xlen_reg = match xlen {
        32 => Reg::i32(),
        64 => Reg::i64(),
        _ => unreachable!("Unsupported XLEN: {}", xlen),
    };
    if is_riscv_aggregate(arg) {
        if total.bits() <= xlen {
            arg.cast_to(xlen_reg);
        } else {
            arg.cast_to(Uniform { unit: xlen_reg, total: Size::from_bits(xlen * 2) });
        }
        return false;
    }

    // "When passed in registers, scalars narrower than XLEN bits are widened
    // according to the sign of their type up to 32 bits, then sign-extended to
    // XLEN bits."
    extend_integer_width(arg, xlen);
    false
}

fn classify_arg<'a, Ty, C>(
    cx: &C,
    arg: &mut ArgAbi<'a, Ty>,
    xlen: u64,
    flen: u64,
    is_vararg: bool,
    avail_gprs: &mut u64,
    avail_fprs: &mut u64,
) where
    Ty: TyAbiInterface<'a, C> + Copy,
{
    if !is_vararg {
        match should_use_fp_conv(cx, &arg.layout, xlen, flen) {
            Some(FloatConv::Float(f)) if *avail_fprs >= 1 => {
                *avail_fprs -= 1;
                arg.cast_to(f);
                return;
            }
            Some(FloatConv::FloatPair(l, r)) if *avail_fprs >= 2 => {
                *avail_fprs -= 2;
                arg.cast_to(CastTarget::pair(l, r));
                return;
            }
            Some(FloatConv::MixedPair(l, r)) if *avail_fprs >= 1 && *avail_gprs >= 1 => {
                *avail_gprs -= 1;
                *avail_fprs -= 1;
                arg.cast_to(CastTarget::pair(l, r));
                return;
            }
            _ => (),
        }
    }

    let total = arg.layout.size;
    let align = arg.layout.align.abi.bits();

    // "Scalars wider than 2✕XLEN are passed by reference and are replaced in
    // the argument list with the address."
    // "Aggregates larger than 2✕XLEN bits are passed by reference and are
    // replaced in the argument list with the address, as are C++ aggregates
    // with nontrivial copy constructors, destructors, or vtables."
    if total.bits() > 2 * xlen {
        // We rely on the LLVM backend lowering code to lower passing a scalar larger than 2*XLEN.
        if is_riscv_aggregate(arg) {
            arg.make_indirect();
        }
        if *avail_gprs >= 1 {
            *avail_gprs -= 1;
        }
        return;
    }

    let double_xlen_reg = match xlen {
        32 => Reg::i64(),
        64 => Reg::i128(),
        _ => unreachable!("Unsupported XLEN: {}", xlen),
    };

    let xlen_reg = match xlen {
        32 => Reg::i32(),
        64 => Reg::i64(),
        _ => unreachable!("Unsupported XLEN: {}", xlen),
    };

    if total.bits() > xlen {
        let align_regs = align > xlen;
        if is_riscv_aggregate(arg) {
            arg.cast_to(Uniform {
                unit: if align_regs { double_xlen_reg } else { xlen_reg },
                total: Size::from_bits(xlen * 2),
            });
        }
        if align_regs && is_vararg {
            *avail_gprs -= *avail_gprs % 2;
        }
        if *avail_gprs >= 2 {
            *avail_gprs -= 2;
        } else {
            *avail_gprs = 0;
        }
        return;
    } else if is_riscv_aggregate(arg) {
        arg.cast_to(xlen_reg);
        if *avail_gprs >= 1 {
            *avail_gprs -= 1;
        }
        return;
    }

    // "When passed in registers, scalars narrower than XLEN bits are widened
    // according to the sign of their type up to 32 bits, then sign-extended to
    // XLEN bits."
    if *avail_gprs >= 1 {
        extend_integer_width(arg, xlen);
        *avail_gprs -= 1;
    }
}

fn extend_integer_width<Ty>(arg: &mut ArgAbi<'_, Ty>, xlen: u64) {
    if let Abi::Scalar(scalar) = arg.layout.abi {
        if let abi::Int(i, _) = scalar.primitive() {
            // 32-bit integers are always sign-extended
            if i.size().bits() == 32 && xlen > 32 {
                if let PassMode::Direct(ref mut attrs) = arg.mode {
                    attrs.ext(ArgExtension::Sext);
                    return;
                }
            }
        }
    }

    arg.extend_integer_width_to(xlen);
}

pub fn compute_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>)
where
    Ty: TyAbiInterface<'a, C> + Copy,
    C: HasDataLayout + HasTargetSpec,
{
    let flen = match &cx.target_spec().llvm_abiname[..] {
        "ilp32f" | "lp64f" => 32,
        "ilp32d" | "lp64d" => 64,
        _ => 0,
    };
    let xlen = cx.data_layout().pointer_size.bits();

    let mut avail_gprs = 8;
    let mut avail_fprs = 8;

    if !fn_abi.ret.is_ignore() && classify_ret(cx, &mut fn_abi.ret, xlen, flen) {
        avail_gprs -= 1;
    }

    for (i, arg) in fn_abi.args.iter_mut().enumerate() {
        if arg.is_ignore() {
            continue;
        }
        classify_arg(
            cx,
            arg,
            xlen,
            flen,
            i >= fn_abi.fixed_count as usize,
            &mut avail_gprs,
            &mut avail_fprs,
        );
    }
}