1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
//! See docs in build/expr/mod.rs
use crate::build::scope::DropKind;
use crate::build::{BlockAnd, BlockAndExtension, Builder};
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_middle::middle::region;
use rustc_middle::mir::*;
use rustc_middle::thir::*;
impl<'a, 'tcx> Builder<'a, 'tcx> {
/// Compile `expr` into a fresh temporary. This is used when building
/// up rvalues so as to freeze the value that will be consumed.
pub(crate) fn as_temp(
&mut self,
block: BasicBlock,
temp_lifetime: Option<region::Scope>,
expr: &Expr<'tcx>,
mutability: Mutability,
) -> BlockAnd<Local> {
// this is the only place in mir building that we need to truly need to worry about
// infinite recursion. Everything else does recurse, too, but it always gets broken up
// at some point by inserting an intermediate temporary
ensure_sufficient_stack(|| self.as_temp_inner(block, temp_lifetime, expr, mutability))
}
#[instrument(skip(self), level = "debug")]
fn as_temp_inner(
&mut self,
mut block: BasicBlock,
temp_lifetime: Option<region::Scope>,
expr: &Expr<'tcx>,
mutability: Mutability,
) -> BlockAnd<Local> {
let this = self;
let expr_span = expr.span;
let source_info = this.source_info(expr_span);
if let ExprKind::Scope { region_scope, lint_level, value } = expr.kind {
return this.in_scope((region_scope, source_info), lint_level, |this| {
this.as_temp(block, temp_lifetime, &this.thir[value], mutability)
});
}
let expr_ty = expr.ty;
let temp = {
let mut local_decl = LocalDecl::new(expr_ty, expr_span);
if mutability.is_not() {
local_decl = local_decl.immutable();
}
debug!("creating temp {:?} with block_context: {:?}", local_decl, this.block_context);
let local_info = match expr.kind {
ExprKind::StaticRef { def_id, .. } => {
assert!(!this.tcx.is_thread_local_static(def_id));
LocalInfo::StaticRef { def_id, is_thread_local: false }
}
ExprKind::ThreadLocalRef(def_id) => {
assert!(this.tcx.is_thread_local_static(def_id));
LocalInfo::StaticRef { def_id, is_thread_local: true }
}
ExprKind::NamedConst { def_id, .. } | ExprKind::ConstParam { def_id, .. } => {
LocalInfo::ConstRef { def_id }
}
// Find out whether this temp is being created within the
// tail expression of a block whose result is ignored.
_ if let Some(tail_info) = this.block_context.currently_in_block_tail() => {
LocalInfo::BlockTailTemp(tail_info)
}
_ => LocalInfo::Boring,
};
**local_decl.local_info.as_mut().assert_crate_local() = local_info;
this.local_decls.push(local_decl)
};
let temp_place = Place::from(temp);
match expr.kind {
// Don't bother with StorageLive and Dead for these temporaries,
// they are never assigned.
ExprKind::Break { .. } | ExprKind::Continue { .. } | ExprKind::Return { .. } => (),
ExprKind::Block { block }
if let Block { expr: None, targeted_by_break: false, .. } = this.thir[block]
&& expr_ty.is_never() => {}
_ => {
this.cfg
.push(block, Statement { source_info, kind: StatementKind::StorageLive(temp) });
// In constants, `temp_lifetime` is `None` for temporaries that
// live for the `'static` lifetime. Thus we do not drop these
// temporaries and simply leak them.
// This is equivalent to what `let x = &foo();` does in
// functions. The temporary is lifted to their surrounding
// scope. In a function that means the temporary lives until
// just before the function returns. In constants that means it
// outlives the constant's initialization value computation.
// Anything outliving a constant must have the `'static`
// lifetime and live forever.
// Anything with a shorter lifetime (e.g the `&foo()` in
// `bar(&foo())` or anything within a block will keep the
// regular drops just like runtime code.
if let Some(temp_lifetime) = temp_lifetime {
this.schedule_drop(expr_span, temp_lifetime, temp, DropKind::Storage);
}
}
}
unpack!(block = this.expr_into_dest(temp_place, block, expr));
if let Some(temp_lifetime) = temp_lifetime {
this.schedule_drop(expr_span, temp_lifetime, temp, DropKind::Value);
}
block.and(temp)
}
}