1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
use crate::attributes;
use crate::builder::Builder;
use crate::context::CodegenCx;
use crate::llvm::{self, Attribute, AttributePlace};
use crate::type_::Type;
use crate::type_of::LayoutLlvmExt;
use crate::value::Value;

use rustc_codegen_ssa::mir::operand::OperandValue;
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::traits::*;
use rustc_codegen_ssa::MemFlags;
use rustc_middle::bug;
use rustc_middle::ty::layout::LayoutOf;
pub use rustc_middle::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA};
use rustc_middle::ty::Ty;
use rustc_session::config;
use rustc_target::abi::call::ArgAbi;
pub use rustc_target::abi::call::*;
use rustc_target::abi::{self, HasDataLayout, Int};
pub use rustc_target::spec::abi::Abi;
use rustc_target::spec::SanitizerSet;

use libc::c_uint;
use smallvec::SmallVec;

pub trait ArgAttributesExt {
    fn apply_attrs_to_llfn(&self, idx: AttributePlace, cx: &CodegenCx<'_, '_>, llfn: &Value);
    fn apply_attrs_to_callsite(
        &self,
        idx: AttributePlace,
        cx: &CodegenCx<'_, '_>,
        callsite: &Value,
    );
}

const ABI_AFFECTING_ATTRIBUTES: [(ArgAttribute, llvm::AttributeKind); 1] =
    [(ArgAttribute::InReg, llvm::AttributeKind::InReg)];

const OPTIMIZATION_ATTRIBUTES: [(ArgAttribute, llvm::AttributeKind); 5] = [
    (ArgAttribute::NoAlias, llvm::AttributeKind::NoAlias),
    (ArgAttribute::NoCapture, llvm::AttributeKind::NoCapture),
    (ArgAttribute::NonNull, llvm::AttributeKind::NonNull),
    (ArgAttribute::ReadOnly, llvm::AttributeKind::ReadOnly),
    (ArgAttribute::NoUndef, llvm::AttributeKind::NoUndef),
];

fn get_attrs<'ll>(this: &ArgAttributes, cx: &CodegenCx<'ll, '_>) -> SmallVec<[&'ll Attribute; 8]> {
    let mut regular = this.regular;

    let mut attrs = SmallVec::new();

    // ABI-affecting attributes must always be applied
    for (attr, llattr) in ABI_AFFECTING_ATTRIBUTES {
        if regular.contains(attr) {
            attrs.push(llattr.create_attr(cx.llcx));
        }
    }
    if let Some(align) = this.pointee_align {
        attrs.push(llvm::CreateAlignmentAttr(cx.llcx, align.bytes()));
    }
    match this.arg_ext {
        ArgExtension::None => {}
        ArgExtension::Zext => attrs.push(llvm::AttributeKind::ZExt.create_attr(cx.llcx)),
        ArgExtension::Sext => attrs.push(llvm::AttributeKind::SExt.create_attr(cx.llcx)),
    }

    // Only apply remaining attributes when optimizing
    if cx.sess().opts.optimize != config::OptLevel::No {
        let deref = this.pointee_size.bytes();
        if deref != 0 {
            if regular.contains(ArgAttribute::NonNull) {
                attrs.push(llvm::CreateDereferenceableAttr(cx.llcx, deref));
            } else {
                attrs.push(llvm::CreateDereferenceableOrNullAttr(cx.llcx, deref));
            }
            regular -= ArgAttribute::NonNull;
        }
        for (attr, llattr) in OPTIMIZATION_ATTRIBUTES {
            if regular.contains(attr) {
                attrs.push(llattr.create_attr(cx.llcx));
            }
        }
    } else if cx.tcx.sess.opts.unstable_opts.sanitizer.contains(SanitizerSet::MEMORY) {
        // If we're not optimising, *but* memory sanitizer is on, emit noundef, since it affects
        // memory sanitizer's behavior.

        if regular.contains(ArgAttribute::NoUndef) {
            attrs.push(llvm::AttributeKind::NoUndef.create_attr(cx.llcx));
        }
    }

    attrs
}

impl ArgAttributesExt for ArgAttributes {
    fn apply_attrs_to_llfn(&self, idx: AttributePlace, cx: &CodegenCx<'_, '_>, llfn: &Value) {
        let attrs = get_attrs(self, cx);
        attributes::apply_to_llfn(llfn, idx, &attrs);
    }

    fn apply_attrs_to_callsite(
        &self,
        idx: AttributePlace,
        cx: &CodegenCx<'_, '_>,
        callsite: &Value,
    ) {
        let attrs = get_attrs(self, cx);
        attributes::apply_to_callsite(callsite, idx, &attrs);
    }
}

pub trait LlvmType {
    fn llvm_type<'ll>(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type;
}

impl LlvmType for Reg {
    fn llvm_type<'ll>(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type {
        match self.kind {
            RegKind::Integer => cx.type_ix(self.size.bits()),
            RegKind::Float => match self.size.bits() {
                32 => cx.type_f32(),
                64 => cx.type_f64(),
                _ => bug!("unsupported float: {:?}", self),
            },
            RegKind::Vector => cx.type_vector(cx.type_i8(), self.size.bytes()),
        }
    }
}

impl LlvmType for CastTarget {
    fn llvm_type<'ll>(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type {
        let rest_ll_unit = self.rest.unit.llvm_type(cx);
        let (rest_count, rem_bytes) = if self.rest.unit.size.bytes() == 0 {
            (0, 0)
        } else {
            (
                self.rest.total.bytes() / self.rest.unit.size.bytes(),
                self.rest.total.bytes() % self.rest.unit.size.bytes(),
            )
        };

        if self.prefix.iter().all(|x| x.is_none()) {
            // Simplify to a single unit when there is no prefix and size <= unit size
            if self.rest.total <= self.rest.unit.size {
                return rest_ll_unit;
            }

            // Simplify to array when all chunks are the same size and type
            if rem_bytes == 0 {
                return cx.type_array(rest_ll_unit, rest_count);
            }
        }

        // Create list of fields in the main structure
        let mut args: Vec<_> = self
            .prefix
            .iter()
            .flat_map(|option_reg| option_reg.map(|reg| reg.llvm_type(cx)))
            .chain((0..rest_count).map(|_| rest_ll_unit))
            .collect();

        // Append final integer
        if rem_bytes != 0 {
            // Only integers can be really split further.
            assert_eq!(self.rest.unit.kind, RegKind::Integer);
            args.push(cx.type_ix(rem_bytes * 8));
        }

        cx.type_struct(&args, false)
    }
}

pub trait ArgAbiExt<'ll, 'tcx> {
    fn memory_ty(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type;
    fn store(
        &self,
        bx: &mut Builder<'_, 'll, 'tcx>,
        val: &'ll Value,
        dst: PlaceRef<'tcx, &'ll Value>,
    );
    fn store_fn_arg(
        &self,
        bx: &mut Builder<'_, 'll, 'tcx>,
        idx: &mut usize,
        dst: PlaceRef<'tcx, &'ll Value>,
    );
}

impl<'ll, 'tcx> ArgAbiExt<'ll, 'tcx> for ArgAbi<'tcx, Ty<'tcx>> {
    /// Gets the LLVM type for a place of the original Rust type of
    /// this argument/return, i.e., the result of `type_of::type_of`.
    fn memory_ty(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type {
        self.layout.llvm_type(cx)
    }

    /// Stores a direct/indirect value described by this ArgAbi into a
    /// place for the original Rust type of this argument/return.
    /// Can be used for both storing formal arguments into Rust variables
    /// or results of call/invoke instructions into their destinations.
    fn store(
        &self,
        bx: &mut Builder<'_, 'll, 'tcx>,
        val: &'ll Value,
        dst: PlaceRef<'tcx, &'ll Value>,
    ) {
        if self.is_ignore() {
            return;
        }
        if self.is_sized_indirect() {
            OperandValue::Ref(val, None, self.layout.align.abi).store(bx, dst)
        } else if self.is_unsized_indirect() {
            bug!("unsized `ArgAbi` must be handled through `store_fn_arg`");
        } else if let PassMode::Cast { cast, pad_i32: _ } = &self.mode {
            // FIXME(eddyb): Figure out when the simpler Store is safe, clang
            // uses it for i16 -> {i8, i8}, but not for i24 -> {i8, i8, i8}.
            let can_store_through_cast_ptr = false;
            if can_store_through_cast_ptr {
                bx.store(val, dst.llval, self.layout.align.abi);
            } else {
                // The actual return type is a struct, but the ABI
                // adaptation code has cast it into some scalar type. The
                // code that follows is the only reliable way I have
                // found to do a transform like i64 -> {i32,i32}.
                // Basically we dump the data onto the stack then memcpy it.
                //
                // Other approaches I tried:
                // - Casting rust ret pointer to the foreign type and using Store
                //   is (a) unsafe if size of foreign type > size of rust type and
                //   (b) runs afoul of strict aliasing rules, yielding invalid
                //   assembly under -O (specifically, the store gets removed).
                // - Truncating foreign type to correct integral type and then
                //   bitcasting to the struct type yields invalid cast errors.

                // We instead thus allocate some scratch space...
                let scratch_size = cast.size(bx);
                let scratch_align = cast.align(bx);
                let llscratch = bx.alloca(cast.llvm_type(bx), scratch_align);
                bx.lifetime_start(llscratch, scratch_size);

                // ... where we first store the value...
                bx.store(val, llscratch, scratch_align);

                // ... and then memcpy it to the intended destination.
                bx.memcpy(
                    dst.llval,
                    self.layout.align.abi,
                    llscratch,
                    scratch_align,
                    bx.const_usize(self.layout.size.bytes()),
                    MemFlags::empty(),
                );

                bx.lifetime_end(llscratch, scratch_size);
            }
        } else {
            OperandValue::Immediate(val).store(bx, dst);
        }
    }

    fn store_fn_arg(
        &self,
        bx: &mut Builder<'_, 'll, 'tcx>,
        idx: &mut usize,
        dst: PlaceRef<'tcx, &'ll Value>,
    ) {
        let mut next = || {
            let val = llvm::get_param(bx.llfn(), *idx as c_uint);
            *idx += 1;
            val
        };
        match self.mode {
            PassMode::Ignore => {}
            PassMode::Pair(..) => {
                OperandValue::Pair(next(), next()).store(bx, dst);
            }
            PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ } => {
                OperandValue::Ref(next(), Some(next()), self.layout.align.abi).store(bx, dst);
            }
            PassMode::Direct(_)
            | PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ }
            | PassMode::Cast { .. } => {
                let next_arg = next();
                self.store(bx, next_arg, dst);
            }
        }
    }
}

impl<'ll, 'tcx> ArgAbiMethods<'tcx> for Builder<'_, 'll, 'tcx> {
    fn store_fn_arg(
        &mut self,
        arg_abi: &ArgAbi<'tcx, Ty<'tcx>>,
        idx: &mut usize,
        dst: PlaceRef<'tcx, Self::Value>,
    ) {
        arg_abi.store_fn_arg(self, idx, dst)
    }
    fn store_arg(
        &mut self,
        arg_abi: &ArgAbi<'tcx, Ty<'tcx>>,
        val: &'ll Value,
        dst: PlaceRef<'tcx, &'ll Value>,
    ) {
        arg_abi.store(self, val, dst)
    }
    fn arg_memory_ty(&self, arg_abi: &ArgAbi<'tcx, Ty<'tcx>>) -> &'ll Type {
        arg_abi.memory_ty(self)
    }
}

pub trait FnAbiLlvmExt<'ll, 'tcx> {
    fn llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type;
    fn ptr_to_llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type;
    fn llvm_cconv(&self) -> llvm::CallConv;
    fn apply_attrs_llfn(&self, cx: &CodegenCx<'ll, 'tcx>, llfn: &'ll Value);
    fn apply_attrs_callsite(&self, bx: &mut Builder<'_, 'll, 'tcx>, callsite: &'ll Value);
}

impl<'ll, 'tcx> FnAbiLlvmExt<'ll, 'tcx> for FnAbi<'tcx, Ty<'tcx>> {
    fn llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type {
        // Ignore "extra" args from the call site for C variadic functions.
        // Only the "fixed" args are part of the LLVM function signature.
        let args =
            if self.c_variadic { &self.args[..self.fixed_count as usize] } else { &self.args };

        // This capacity calculation is approximate.
        let mut llargument_tys = Vec::with_capacity(
            self.args.len() + if let PassMode::Indirect { .. } = self.ret.mode { 1 } else { 0 },
        );

        let llreturn_ty = match &self.ret.mode {
            PassMode::Ignore => cx.type_void(),
            PassMode::Direct(_) | PassMode::Pair(..) => self.ret.layout.immediate_llvm_type(cx),
            PassMode::Cast { cast, pad_i32: _ } => cast.llvm_type(cx),
            PassMode::Indirect { .. } => {
                llargument_tys.push(cx.type_ptr());
                cx.type_void()
            }
        };

        for arg in args {
            // Note that the exact number of arguments pushed here is carefully synchronized with
            // code all over the place, both in the codegen_llvm and codegen_ssa crates. That's how
            // other code then knows which LLVM argument(s) correspond to the n-th Rust argument.
            let llarg_ty = match &arg.mode {
                PassMode::Ignore => continue,
                PassMode::Direct(_) => {
                    // ABI-compatible Rust types have the same `layout.abi` (up to validity ranges),
                    // and for Scalar ABIs the LLVM type is fully determined by `layout.abi`,
                    // guarnateeing that we generate ABI-compatible LLVM IR. Things get tricky for
                    // aggregates...
                    if matches!(arg.layout.abi, abi::Abi::Aggregate { .. }) {
                        assert!(
                            arg.layout.is_sized(),
                            "`PassMode::Direct` for unsized type: {}",
                            arg.layout.ty
                        );
                        // This really shouldn't happen, since `immediate_llvm_type` will use
                        // `layout.fields` to turn this Rust type into an LLVM type. This means all
                        // sorts of Rust type details leak into the ABI. However wasm sadly *does*
                        // currently use this mode so we have to allow it -- but we absolutely
                        // shouldn't let any more targets do that.
                        // (Also see <https://github.com/rust-lang/rust/issues/115666>.)
                        assert!(
                            matches!(&*cx.tcx.sess.target.arch, "wasm32" | "wasm64"),
                            "`PassMode::Direct` for aggregates only allowed on wasm targets\nProblematic type: {:#?}",
                            arg.layout,
                        );
                    }
                    arg.layout.immediate_llvm_type(cx)
                }
                PassMode::Pair(..) => {
                    // ABI-compatible Rust types have the same `layout.abi` (up to validity ranges),
                    // so for ScalarPair we can easily be sure that we are generating ABI-compatible
                    // LLVM IR.
                    assert!(
                        matches!(arg.layout.abi, abi::Abi::ScalarPair(..)),
                        "PassMode::Pair for type {}",
                        arg.layout.ty
                    );
                    llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 0, true));
                    llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 1, true));
                    continue;
                }
                PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack } => {
                    // `Indirect` with metadata is only for unsized types, and doesn't work with
                    // on-stack passing.
                    assert!(arg.layout.is_unsized() && !on_stack);
                    // Construct the type of a (wide) pointer to `ty`, and pass its two fields.
                    // Any two ABI-compatible unsized types have the same metadata type and
                    // moreover the same metadata value leads to the same dynamic size and
                    // alignment, so this respects ABI compatibility.
                    let ptr_ty = Ty::new_mut_ptr(cx.tcx, arg.layout.ty);
                    let ptr_layout = cx.layout_of(ptr_ty);
                    llargument_tys.push(ptr_layout.scalar_pair_element_llvm_type(cx, 0, true));
                    llargument_tys.push(ptr_layout.scalar_pair_element_llvm_type(cx, 1, true));
                    continue;
                }
                PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ } => {
                    assert!(arg.layout.is_sized());
                    cx.type_ptr()
                }
                PassMode::Cast { cast, pad_i32 } => {
                    // `Cast` means "transmute to `CastType`"; that only makes sense for sized types.
                    assert!(arg.layout.is_sized());
                    // add padding
                    if *pad_i32 {
                        llargument_tys.push(Reg::i32().llvm_type(cx));
                    }
                    // Compute the LLVM type we use for this function from the cast type.
                    // We assume here that ABI-compatible Rust types have the same cast type.
                    cast.llvm_type(cx)
                }
            };
            llargument_tys.push(llarg_ty);
        }

        if self.c_variadic {
            cx.type_variadic_func(&llargument_tys, llreturn_ty)
        } else {
            cx.type_func(&llargument_tys, llreturn_ty)
        }
    }

    fn ptr_to_llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type {
        cx.type_ptr_ext(cx.data_layout().instruction_address_space)
    }

    fn llvm_cconv(&self) -> llvm::CallConv {
        self.conv.into()
    }

    fn apply_attrs_llfn(&self, cx: &CodegenCx<'ll, 'tcx>, llfn: &'ll Value) {
        let mut func_attrs = SmallVec::<[_; 3]>::new();
        if self.ret.layout.abi.is_uninhabited() {
            func_attrs.push(llvm::AttributeKind::NoReturn.create_attr(cx.llcx));
        }
        if !self.can_unwind {
            func_attrs.push(llvm::AttributeKind::NoUnwind.create_attr(cx.llcx));
        }
        if let Conv::RiscvInterrupt { kind } = self.conv {
            func_attrs.push(llvm::CreateAttrStringValue(cx.llcx, "interrupt", kind.as_str()));
        }
        attributes::apply_to_llfn(llfn, llvm::AttributePlace::Function, &{ func_attrs });

        let mut i = 0;
        let mut apply = |attrs: &ArgAttributes| {
            attrs.apply_attrs_to_llfn(llvm::AttributePlace::Argument(i), cx, llfn);
            i += 1;
            i - 1
        };
        match &self.ret.mode {
            PassMode::Direct(attrs) => {
                attrs.apply_attrs_to_llfn(llvm::AttributePlace::ReturnValue, cx, llfn);
            }
            PassMode::Indirect { attrs, meta_attrs: _, on_stack } => {
                assert!(!on_stack);
                let i = apply(attrs);
                let sret = llvm::CreateStructRetAttr(cx.llcx, self.ret.layout.llvm_type(cx));
                attributes::apply_to_llfn(llfn, llvm::AttributePlace::Argument(i), &[sret]);
            }
            PassMode::Cast { cast, pad_i32: _ } => {
                cast.attrs.apply_attrs_to_llfn(llvm::AttributePlace::ReturnValue, cx, llfn);
            }
            _ => {}
        }
        for arg in self.args.iter() {
            match &arg.mode {
                PassMode::Ignore => {}
                PassMode::Indirect { attrs, meta_attrs: None, on_stack: true } => {
                    let i = apply(attrs);
                    let byval = llvm::CreateByValAttr(cx.llcx, arg.layout.llvm_type(cx));
                    attributes::apply_to_llfn(llfn, llvm::AttributePlace::Argument(i), &[byval]);
                }
                PassMode::Direct(attrs)
                | PassMode::Indirect { attrs, meta_attrs: None, on_stack: false } => {
                    apply(attrs);
                }
                PassMode::Indirect { attrs, meta_attrs: Some(meta_attrs), on_stack } => {
                    assert!(!on_stack);
                    apply(attrs);
                    apply(meta_attrs);
                }
                PassMode::Pair(a, b) => {
                    apply(a);
                    apply(b);
                }
                PassMode::Cast { cast, pad_i32 } => {
                    if *pad_i32 {
                        apply(&ArgAttributes::new());
                    }
                    apply(&cast.attrs);
                }
            }
        }
    }

    fn apply_attrs_callsite(&self, bx: &mut Builder<'_, 'll, 'tcx>, callsite: &'ll Value) {
        let mut func_attrs = SmallVec::<[_; 2]>::new();
        if self.ret.layout.abi.is_uninhabited() {
            func_attrs.push(llvm::AttributeKind::NoReturn.create_attr(bx.cx.llcx));
        }
        if !self.can_unwind {
            func_attrs.push(llvm::AttributeKind::NoUnwind.create_attr(bx.cx.llcx));
        }
        attributes::apply_to_callsite(callsite, llvm::AttributePlace::Function, &{ func_attrs });

        let mut i = 0;
        let mut apply = |cx: &CodegenCx<'_, '_>, attrs: &ArgAttributes| {
            attrs.apply_attrs_to_callsite(llvm::AttributePlace::Argument(i), cx, callsite);
            i += 1;
            i - 1
        };
        match &self.ret.mode {
            PassMode::Direct(attrs) => {
                attrs.apply_attrs_to_callsite(llvm::AttributePlace::ReturnValue, bx.cx, callsite);
            }
            PassMode::Indirect { attrs, meta_attrs: _, on_stack } => {
                assert!(!on_stack);
                let i = apply(bx.cx, attrs);
                let sret = llvm::CreateStructRetAttr(bx.cx.llcx, self.ret.layout.llvm_type(bx));
                attributes::apply_to_callsite(callsite, llvm::AttributePlace::Argument(i), &[sret]);
            }
            PassMode::Cast { cast, pad_i32: _ } => {
                cast.attrs.apply_attrs_to_callsite(
                    llvm::AttributePlace::ReturnValue,
                    &bx.cx,
                    callsite,
                );
            }
            _ => {}
        }
        if let abi::Abi::Scalar(scalar) = self.ret.layout.abi {
            // If the value is a boolean, the range is 0..2 and that ultimately
            // become 0..0 when the type becomes i1, which would be rejected
            // by the LLVM verifier.
            if let Int(..) = scalar.primitive() {
                if !scalar.is_bool() && !scalar.is_always_valid(bx) {
                    bx.range_metadata(callsite, scalar.valid_range(bx));
                }
            }
        }
        for arg in self.args.iter() {
            match &arg.mode {
                PassMode::Ignore => {}
                PassMode::Indirect { attrs, meta_attrs: None, on_stack: true } => {
                    let i = apply(bx.cx, attrs);
                    let byval = llvm::CreateByValAttr(bx.cx.llcx, arg.layout.llvm_type(bx));
                    attributes::apply_to_callsite(
                        callsite,
                        llvm::AttributePlace::Argument(i),
                        &[byval],
                    );
                }
                PassMode::Direct(attrs)
                | PassMode::Indirect { attrs, meta_attrs: None, on_stack: false } => {
                    apply(bx.cx, attrs);
                }
                PassMode::Indirect { attrs, meta_attrs: Some(meta_attrs), on_stack: _ } => {
                    apply(bx.cx, attrs);
                    apply(bx.cx, meta_attrs);
                }
                PassMode::Pair(a, b) => {
                    apply(bx.cx, a);
                    apply(bx.cx, b);
                }
                PassMode::Cast { cast, pad_i32 } => {
                    if *pad_i32 {
                        apply(bx.cx, &ArgAttributes::new());
                    }
                    apply(bx.cx, &cast.attrs);
                }
            }
        }

        let cconv = self.llvm_cconv();
        if cconv != llvm::CCallConv {
            llvm::SetInstructionCallConv(callsite, cconv);
        }

        if self.conv == Conv::CCmseNonSecureCall {
            // This will probably get ignored on all targets but those supporting the TrustZone-M
            // extension (thumbv8m targets).
            let cmse_nonsecure_call = llvm::CreateAttrString(bx.cx.llcx, "cmse_nonsecure_call");
            attributes::apply_to_callsite(
                callsite,
                llvm::AttributePlace::Function,
                &[cmse_nonsecure_call],
            );
        }

        // Some intrinsics require that an elementtype attribute (with the pointee type of a
        // pointer argument) is added to the callsite.
        let element_type_index = unsafe { llvm::LLVMRustGetElementTypeArgIndex(callsite) };
        if element_type_index >= 0 {
            let arg_ty = self.args[element_type_index as usize].layout.ty;
            let pointee_ty = arg_ty.builtin_deref(true).expect("Must be pointer argument").ty;
            let element_type_attr = unsafe {
                llvm::LLVMRustCreateElementTypeAttr(bx.llcx, bx.layout_of(pointee_ty).llvm_type(bx))
            };
            attributes::apply_to_callsite(
                callsite,
                llvm::AttributePlace::Argument(element_type_index as u32),
                &[element_type_attr],
            );
        }
    }
}

impl<'tcx> AbiBuilderMethods<'tcx> for Builder<'_, '_, 'tcx> {
    fn get_param(&mut self, index: usize) -> Self::Value {
        llvm::get_param(self.llfn(), index as c_uint)
    }
}

impl From<Conv> for llvm::CallConv {
    fn from(conv: Conv) -> Self {
        match conv {
            Conv::C | Conv::Rust | Conv::CCmseNonSecureCall | Conv::RiscvInterrupt { .. } => {
                llvm::CCallConv
            }
            Conv::Cold => llvm::ColdCallConv,
            Conv::PreserveMost => llvm::PreserveMost,
            Conv::PreserveAll => llvm::PreserveAll,
            Conv::AmdGpuKernel => llvm::AmdGpuKernel,
            Conv::AvrInterrupt => llvm::AvrInterrupt,
            Conv::AvrNonBlockingInterrupt => llvm::AvrNonBlockingInterrupt,
            Conv::ArmAapcs => llvm::ArmAapcsCallConv,
            Conv::Msp430Intr => llvm::Msp430Intr,
            Conv::PtxKernel => llvm::PtxKernel,
            Conv::X86Fastcall => llvm::X86FastcallCallConv,
            Conv::X86Intr => llvm::X86_Intr,
            Conv::X86Stdcall => llvm::X86StdcallCallConv,
            Conv::X86ThisCall => llvm::X86_ThisCall,
            Conv::X86VectorCall => llvm::X86_VectorCall,
            Conv::X86_64SysV => llvm::X86_64_SysV,
            Conv::X86_64Win64 => llvm::X86_64_Win64,
        }
    }
}