1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
use rustc_data_structures::fx::FxHashMap;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::DefId;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_middle::ty::{GenericArg, GenericArgKind};
use rustc_span::Span;

use super::explicit::ExplicitPredicatesMap;
use super::utils::*;

/// Infer predicates for the items in the crate.
///
/// `global_inferred_outlives`: this is initially the empty map that
///     was generated by walking the items in the crate. This will
///     now be filled with inferred predicates.
pub(super) fn infer_predicates(
    tcx: TyCtxt<'_>,
) -> FxHashMap<DefId, ty::EarlyBinder<RequiredPredicates<'_>>> {
    debug!("infer_predicates");

    let mut explicit_map = ExplicitPredicatesMap::new();

    let mut global_inferred_outlives = FxHashMap::default();

    // If new predicates were added then we need to re-calculate
    // all crates since there could be new implied predicates.
    'outer: loop {
        let mut predicates_added = false;

        // Visit all the crates and infer predicates
        for id in tcx.hir().items() {
            let item_did = id.owner_id;

            debug!("InferVisitor::visit_item(item={:?})", item_did);

            let mut item_required_predicates = RequiredPredicates::default();
            match tcx.def_kind(item_did) {
                DefKind::Union | DefKind::Enum | DefKind::Struct => {
                    let adt_def = tcx.adt_def(item_did.to_def_id());

                    // Iterate over all fields in item_did
                    for field_def in adt_def.all_fields() {
                        // Calculating the predicate requirements necessary
                        // for item_did.
                        //
                        // For field of type &'a T (reference) or Adt
                        // (struct/enum/union) there will be outlive
                        // requirements for adt_def.
                        let field_ty = tcx.type_of(field_def.did).instantiate_identity();
                        let field_span = tcx.def_span(field_def.did);
                        insert_required_predicates_to_be_wf(
                            tcx,
                            field_ty,
                            field_span,
                            &global_inferred_outlives,
                            &mut item_required_predicates,
                            &mut explicit_map,
                        );
                    }
                }

                _ => {}
            };

            // If new predicates were added (`local_predicate_map` has more
            // predicates than the `global_inferred_outlives`), the new predicates
            // might result in implied predicates for their parent types.
            // Therefore mark `predicates_added` as true and which will ensure
            // we walk the crates again and re-calculate predicates for all
            // items.
            let item_predicates_len: usize = global_inferred_outlives
                .get(&item_did.to_def_id())
                .map_or(0, |p| p.as_ref().skip_binder().len());
            if item_required_predicates.len() > item_predicates_len {
                predicates_added = true;
                global_inferred_outlives
                    .insert(item_did.to_def_id(), ty::EarlyBinder::bind(item_required_predicates));
            }
        }

        if !predicates_added {
            break 'outer;
        }
    }

    global_inferred_outlives
}

fn insert_required_predicates_to_be_wf<'tcx>(
    tcx: TyCtxt<'tcx>,
    field_ty: Ty<'tcx>,
    field_span: Span,
    global_inferred_outlives: &FxHashMap<DefId, ty::EarlyBinder<RequiredPredicates<'tcx>>>,
    required_predicates: &mut RequiredPredicates<'tcx>,
    explicit_map: &mut ExplicitPredicatesMap<'tcx>,
) {
    for arg in field_ty.walk() {
        let ty = match arg.unpack() {
            GenericArgKind::Type(ty) => ty,

            // No predicates from lifetimes or constants, except potentially
            // constants' types, but `walk` will get to them as well.
            GenericArgKind::Lifetime(_) | GenericArgKind::Const(_) => continue,
        };

        match *ty.kind() {
            // The field is of type &'a T which means that we will have
            // a predicate requirement of T: 'a (T outlives 'a).
            //
            // We also want to calculate potential predicates for the T
            ty::Ref(region, rty, _) => {
                debug!("Ref");
                insert_outlives_predicate(tcx, rty.into(), region, field_span, required_predicates);
            }

            // For each Adt (struct/enum/union) type `Foo<'a, T>`, we
            // can load the current set of inferred and explicit
            // predicates from `global_inferred_outlives` and filter the
            // ones that are TypeOutlives.
            ty::Adt(def, args) => {
                // First check the inferred predicates
                //
                // Example 1:
                //
                //     struct Foo<'a, T> {
                //         field1: Bar<'a, T>
                //     }
                //
                //     struct Bar<'b, U> {
                //         field2: &'b U
                //     }
                //
                // Here, when processing the type of `field1`, we would
                // request the set of implicit predicates computed for `Bar`
                // thus far. This will initially come back empty, but in next
                // round we will get `U: 'b`. We then apply the substitution
                // `['b => 'a, U => T]` and thus get the requirement that `T:
                // 'a` holds for `Foo`.
                debug!("Adt");
                if let Some(unsubstituted_predicates) = global_inferred_outlives.get(&def.did()) {
                    for (unsubstituted_predicate, &span) in
                        unsubstituted_predicates.as_ref().skip_binder()
                    {
                        // `unsubstituted_predicate` is `U: 'b` in the
                        // example above. So apply the substitution to
                        // get `T: 'a` (or `predicate`):
                        let predicate = unsubstituted_predicates
                            .rebind(*unsubstituted_predicate)
                            .instantiate(tcx, args);
                        insert_outlives_predicate(
                            tcx,
                            predicate.0,
                            predicate.1,
                            span,
                            required_predicates,
                        );
                    }
                }

                // Check if the type has any explicit predicates that need
                // to be added to `required_predicates`
                // let _: () = args.region_at(0);
                check_explicit_predicates(
                    tcx,
                    def.did(),
                    args,
                    required_predicates,
                    explicit_map,
                    None,
                );
            }

            ty::Dynamic(obj, ..) => {
                // This corresponds to `dyn Trait<..>`. In this case, we should
                // use the explicit predicates as well.

                debug!("Dynamic");
                debug!("field_ty = {}", &field_ty);
                debug!("ty in field = {}", &ty);
                if let Some(ex_trait_ref) = obj.principal() {
                    // Here, we are passing the type `usize` as a
                    // placeholder value with the function
                    // `with_self_ty`, since there is no concrete type
                    // `Self` for a `dyn Trait` at this
                    // stage. Therefore when checking explicit
                    // predicates in `check_explicit_predicates` we
                    // need to ignore checking the explicit_map for
                    // Self type.
                    let args = ex_trait_ref.with_self_ty(tcx, tcx.types.usize).skip_binder().args;
                    check_explicit_predicates(
                        tcx,
                        ex_trait_ref.skip_binder().def_id,
                        args,
                        required_predicates,
                        explicit_map,
                        Some(tcx.types.self_param),
                    );
                }
            }

            ty::Alias(ty::Projection, obj) => {
                // This corresponds to `<T as Foo<'a>>::Bar`. In this case, we should use the
                // explicit predicates as well.
                debug!("Projection");
                check_explicit_predicates(
                    tcx,
                    tcx.parent(obj.def_id),
                    obj.args,
                    required_predicates,
                    explicit_map,
                    None,
                );
            }

            // FIXME(inherent_associated_types): Handle this case properly.
            ty::Alias(ty::Inherent, _) => {}

            _ => {}
        }
    }
}

/// We also have to check the explicit predicates
/// declared on the type.
/// ```ignore (illustrative)
/// struct Foo<'a, T> {
///     field1: Bar<T>
/// }
///
/// struct Bar<U> where U: 'static, U: Foo {
///     ...
/// }
/// ```
/// Here, we should fetch the explicit predicates, which
/// will give us `U: 'static` and `U: Foo`. The latter we
/// can ignore, but we will want to process `U: 'static`,
/// applying the substitution as above.
fn check_explicit_predicates<'tcx>(
    tcx: TyCtxt<'tcx>,
    def_id: DefId,
    args: &[GenericArg<'tcx>],
    required_predicates: &mut RequiredPredicates<'tcx>,
    explicit_map: &mut ExplicitPredicatesMap<'tcx>,
    ignored_self_ty: Option<Ty<'tcx>>,
) {
    debug!(
        "check_explicit_predicates(def_id={:?}, \
         args={:?}, \
         explicit_map={:?}, \
         required_predicates={:?}, \
         ignored_self_ty={:?})",
        def_id, args, explicit_map, required_predicates, ignored_self_ty,
    );
    let explicit_predicates = explicit_map.explicit_predicates_of(tcx, def_id);

    for (outlives_predicate, &span) in explicit_predicates.as_ref().skip_binder() {
        debug!("outlives_predicate = {:?}", &outlives_predicate);

        // Careful: If we are inferring the effects of a `dyn Trait<..>`
        // type, then when we look up the predicates for `Trait`,
        // we may find some that reference `Self`. e.g., perhaps the
        // definition of `Trait` was:
        //
        // ```
        // trait Trait<'a, T> where Self: 'a  { .. }
        // ```
        //
        // we want to ignore such predicates here, because
        // there is no type parameter for them to affect. Consider
        // a struct containing `dyn Trait`:
        //
        // ```
        // struct MyStruct<'x, X> { field: Box<dyn Trait<'x, X>> }
        // ```
        //
        // The `where Self: 'a` predicate refers to the *existential, hidden type*
        // that is represented by the `dyn Trait`, not to the `X` type parameter
        // (or any other generic parameter) declared on `MyStruct`.
        //
        // Note that we do this check for self **before** applying `args`. In the
        // case that `args` come from a `dyn Trait` type, our caller will have
        // included `Self = usize` as the value for `Self`. If we were
        // to apply the args, and not filter this predicate, we might then falsely
        // conclude that e.g., `X: 'x` was a reasonable inferred requirement.
        //
        // Another similar case is where we have an inferred
        // requirement like `<Self as Trait>::Foo: 'b`. We presently
        // ignore such requirements as well (cc #54467)-- though
        // conceivably it might be better if we could extract the `Foo
        // = X` binding from the object type (there must be such a
        // binding) and thus infer an outlives requirement that `X:
        // 'b`.
        if let Some(self_ty) = ignored_self_ty
            && let GenericArgKind::Type(ty) = outlives_predicate.0.unpack()
            && ty.walk().any(|arg| arg == self_ty.into())
        {
            debug!("skipping self ty = {:?}", &ty);
            continue;
        }

        let predicate = explicit_predicates.rebind(*outlives_predicate).instantiate(tcx, args);
        debug!("predicate = {:?}", &predicate);
        insert_outlives_predicate(tcx, predicate.0, predicate.1, span, required_predicates);
    }
}