1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
use super::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use super::{FixupError, FixupResult, InferCtxt, Span};
use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
use rustc_middle::ty::fold::{FallibleTypeFolder, TypeFolder, TypeSuperFoldable};
use rustc_middle::ty::visit::{TypeSuperVisitable, TypeVisitableExt, TypeVisitor};
use rustc_middle::ty::{self, Const, InferConst, Ty, TyCtxt, TypeFoldable};

use std::ops::ControlFlow;

///////////////////////////////////////////////////////////////////////////
// OPPORTUNISTIC VAR RESOLVER

/// The opportunistic resolver can be used at any time. It simply replaces
/// type/const variables that have been unified with the things they have
/// been unified with (similar to `shallow_resolve`, but deep). This is
/// useful for printing messages etc but also required at various
/// points for correctness.
pub struct OpportunisticVarResolver<'a, 'tcx> {
    // The shallow resolver is used to resolve inference variables at every
    // level of the type.
    shallow_resolver: crate::infer::ShallowResolver<'a, 'tcx>,
}

impl<'a, 'tcx> OpportunisticVarResolver<'a, 'tcx> {
    #[inline]
    pub fn new(infcx: &'a InferCtxt<'tcx>) -> Self {
        OpportunisticVarResolver { shallow_resolver: crate::infer::ShallowResolver { infcx } }
    }
}

impl<'a, 'tcx> TypeFolder<TyCtxt<'tcx>> for OpportunisticVarResolver<'a, 'tcx> {
    fn interner(&self) -> TyCtxt<'tcx> {
        TypeFolder::interner(&self.shallow_resolver)
    }

    #[inline]
    fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
        if !t.has_non_region_infer() {
            t // micro-optimize -- if there is nothing in this type that this fold affects...
        } else {
            let t = self.shallow_resolver.fold_ty(t);
            t.super_fold_with(self)
        }
    }

    fn fold_const(&mut self, ct: Const<'tcx>) -> Const<'tcx> {
        if !ct.has_non_region_infer() {
            ct // micro-optimize -- if there is nothing in this const that this fold affects...
        } else {
            let ct = self.shallow_resolver.fold_const(ct);
            ct.super_fold_with(self)
        }
    }
}

/// The opportunistic region resolver opportunistically resolves regions
/// variables to the variable with the least variable id. It is used when
/// normalizing projections to avoid hitting the recursion limit by creating
/// many versions of a predicate for types that in the end have to unify.
///
/// If you want to resolve type and const variables as well, call
/// [InferCtxt::resolve_vars_if_possible] first.
pub struct OpportunisticRegionResolver<'a, 'tcx> {
    infcx: &'a InferCtxt<'tcx>,
}

impl<'a, 'tcx> OpportunisticRegionResolver<'a, 'tcx> {
    pub fn new(infcx: &'a InferCtxt<'tcx>) -> Self {
        OpportunisticRegionResolver { infcx }
    }
}

impl<'a, 'tcx> TypeFolder<TyCtxt<'tcx>> for OpportunisticRegionResolver<'a, 'tcx> {
    fn interner(&self) -> TyCtxt<'tcx> {
        self.infcx.tcx
    }

    fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
        if !t.has_infer_regions() {
            t // micro-optimize -- if there is nothing in this type that this fold affects...
        } else {
            t.super_fold_with(self)
        }
    }

    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        match *r {
            ty::ReVar(vid) => self
                .infcx
                .inner
                .borrow_mut()
                .unwrap_region_constraints()
                .opportunistic_resolve_var(TypeFolder::interner(self), vid),
            _ => r,
        }
    }

    fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
        if !ct.has_infer_regions() {
            ct // micro-optimize -- if there is nothing in this const that this fold affects...
        } else {
            ct.super_fold_with(self)
        }
    }
}

///////////////////////////////////////////////////////////////////////////
// UNRESOLVED TYPE FINDER

/// The unresolved type **finder** walks a type searching for
/// type variables that don't yet have a value. The first unresolved type is stored.
/// It does not construct the fully resolved type (which might
/// involve some hashing and so forth).
pub struct UnresolvedTypeOrConstFinder<'a, 'tcx> {
    infcx: &'a InferCtxt<'tcx>,
}

impl<'a, 'tcx> UnresolvedTypeOrConstFinder<'a, 'tcx> {
    pub fn new(infcx: &'a InferCtxt<'tcx>) -> Self {
        UnresolvedTypeOrConstFinder { infcx }
    }
}

impl<'a, 'tcx> TypeVisitor<TyCtxt<'tcx>> for UnresolvedTypeOrConstFinder<'a, 'tcx> {
    type BreakTy = (ty::Term<'tcx>, Option<Span>);
    fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
        let t = self.infcx.shallow_resolve(t);
        if let ty::Infer(infer_ty) = *t.kind() {
            // Since we called `shallow_resolve` above, this must
            // be an (as yet...) unresolved inference variable.
            let ty_var_span = if let ty::TyVar(ty_vid) = infer_ty {
                let mut inner = self.infcx.inner.borrow_mut();
                let ty_vars = &inner.type_variables();
                if let TypeVariableOrigin {
                    kind: TypeVariableOriginKind::TypeParameterDefinition(_, _),
                    span,
                } = *ty_vars.var_origin(ty_vid)
                {
                    Some(span)
                } else {
                    None
                }
            } else {
                None
            };
            ControlFlow::Break((t.into(), ty_var_span))
        } else if !t.has_non_region_infer() {
            // All const/type variables in inference types must already be resolved,
            // no need to visit the contents.
            ControlFlow::Continue(())
        } else {
            // Otherwise, keep visiting.
            t.super_visit_with(self)
        }
    }

    fn visit_const(&mut self, ct: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
        let ct = self.infcx.shallow_resolve(ct);
        if let ty::ConstKind::Infer(i) = ct.kind() {
            // Since we called `shallow_resolve` above, this must
            // be an (as yet...) unresolved inference variable.
            let ct_var_span = if let ty::InferConst::Var(vid) = i {
                let mut inner = self.infcx.inner.borrow_mut();
                let ct_vars = &mut inner.const_unification_table();
                if let ConstVariableOrigin {
                    span,
                    kind: ConstVariableOriginKind::ConstParameterDefinition(_, _),
                } = ct_vars.probe_value(vid).origin
                {
                    Some(span)
                } else {
                    None
                }
            } else {
                None
            };
            ControlFlow::Break((ct.into(), ct_var_span))
        } else if !ct.has_non_region_infer() {
            // All const/type variables in inference types must already be resolved,
            // no need to visit the contents.
            ControlFlow::Continue(())
        } else {
            // Otherwise, keep visiting.
            ct.super_visit_with(self)
        }
    }
}

///////////////////////////////////////////////////////////////////////////
// FULL TYPE RESOLUTION

/// Full type resolution replaces all type and region variables with
/// their concrete results. If any variable cannot be replaced (never unified, etc)
/// then an `Err` result is returned.
pub fn fully_resolve<'tcx, T>(infcx: &InferCtxt<'tcx>, value: T) -> FixupResult<'tcx, T>
where
    T: TypeFoldable<TyCtxt<'tcx>>,
{
    value.try_fold_with(&mut FullTypeResolver { infcx })
}

// N.B. This type is not public because the protocol around checking the
// `err` field is not enforceable otherwise.
struct FullTypeResolver<'a, 'tcx> {
    infcx: &'a InferCtxt<'tcx>,
}

impl<'a, 'tcx> FallibleTypeFolder<TyCtxt<'tcx>> for FullTypeResolver<'a, 'tcx> {
    type Error = FixupError<'tcx>;

    fn interner(&self) -> TyCtxt<'tcx> {
        self.infcx.tcx
    }

    fn try_fold_ty(&mut self, t: Ty<'tcx>) -> Result<Ty<'tcx>, Self::Error> {
        if !t.has_infer() {
            Ok(t) // micro-optimize -- if there is nothing in this type that this fold affects...
        } else {
            let t = self.infcx.shallow_resolve(t);
            match *t.kind() {
                ty::Infer(ty::TyVar(vid)) => Err(FixupError::UnresolvedTy(vid)),
                ty::Infer(ty::IntVar(vid)) => Err(FixupError::UnresolvedIntTy(vid)),
                ty::Infer(ty::FloatVar(vid)) => Err(FixupError::UnresolvedFloatTy(vid)),
                ty::Infer(_) => {
                    bug!("Unexpected type in full type resolver: {:?}", t);
                }
                _ => t.try_super_fold_with(self),
            }
        }
    }

    fn try_fold_region(&mut self, r: ty::Region<'tcx>) -> Result<ty::Region<'tcx>, Self::Error> {
        match *r {
            ty::ReVar(_) => Ok(self
                .infcx
                .lexical_region_resolutions
                .borrow()
                .as_ref()
                .expect("region resolution not performed")
                .resolve_region(self.infcx.tcx, r)),
            _ => Ok(r),
        }
    }

    fn try_fold_const(&mut self, c: ty::Const<'tcx>) -> Result<ty::Const<'tcx>, Self::Error> {
        if !c.has_infer() {
            Ok(c) // micro-optimize -- if there is nothing in this const that this fold affects...
        } else {
            let c = self.infcx.shallow_resolve(c);
            match c.kind() {
                ty::ConstKind::Infer(InferConst::Var(vid)) => {
                    return Err(FixupError::UnresolvedConst(vid));
                }
                ty::ConstKind::Infer(InferConst::Fresh(_)) => {
                    bug!("Unexpected const in full const resolver: {:?}", c);
                }
                _ => {}
            }
            c.try_super_fold_with(self)
        }
    }
}