1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
use std::mem;
use rustc_infer::infer::InferCtxt;
use rustc_infer::traits::solve::MaybeCause;
use rustc_infer::traits::Obligation;
use rustc_infer::traits::{
query::NoSolution, FulfillmentError, FulfillmentErrorCode, MismatchedProjectionTypes,
PredicateObligation, SelectionError, TraitEngine,
};
use rustc_middle::ty;
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use super::eval_ctxt::GenerateProofTree;
use super::{Certainty, InferCtxtEvalExt};
/// A trait engine using the new trait solver.
///
/// This is mostly identical to how `evaluate_all` works inside of the
/// solver, except that the requirements are slightly different.
///
/// Unlike `evaluate_all` it is possible to add new obligations later on
/// and we also have to track diagnostics information by using `Obligation`
/// instead of `Goal`.
///
/// It is also likely that we want to use slightly different datastructures
/// here as this will have to deal with far more root goals than `evaluate_all`.
pub struct FulfillmentCtxt<'tcx> {
obligations: Vec<PredicateObligation<'tcx>>,
/// The snapshot in which this context was created. Using the context
/// outside of this snapshot leads to subtle bugs if the snapshot
/// gets rolled back. Because of this we explicitly check that we only
/// use the context in exactly this snapshot.
usable_in_snapshot: usize,
}
impl<'tcx> FulfillmentCtxt<'tcx> {
pub fn new(infcx: &InferCtxt<'tcx>) -> FulfillmentCtxt<'tcx> {
FulfillmentCtxt { obligations: Vec::new(), usable_in_snapshot: infcx.num_open_snapshots() }
}
}
impl<'tcx> TraitEngine<'tcx> for FulfillmentCtxt<'tcx> {
#[instrument(level = "debug", skip(self, infcx))]
fn register_predicate_obligation(
&mut self,
infcx: &InferCtxt<'tcx>,
obligation: PredicateObligation<'tcx>,
) {
assert_eq!(self.usable_in_snapshot, infcx.num_open_snapshots());
self.obligations.push(obligation);
}
fn collect_remaining_errors(&mut self, infcx: &InferCtxt<'tcx>) -> Vec<FulfillmentError<'tcx>> {
self.obligations
.drain(..)
.map(|obligation| {
let code = infcx.probe(|_| {
match infcx
.evaluate_root_goal(obligation.clone().into(), GenerateProofTree::IfEnabled)
.0
{
Ok((_, Certainty::Maybe(MaybeCause::Ambiguity), _)) => {
FulfillmentErrorCode::CodeAmbiguity { overflow: false }
}
Ok((_, Certainty::Maybe(MaybeCause::Overflow), _)) => {
FulfillmentErrorCode::CodeAmbiguity { overflow: true }
}
Ok((_, Certainty::Yes, _)) => {
bug!("did not expect successful goal when collecting ambiguity errors")
}
Err(_) => {
bug!("did not expect selection error when collecting ambiguity errors")
}
}
});
FulfillmentError {
obligation: obligation.clone(),
code,
root_obligation: obligation,
}
})
.collect()
}
fn select_where_possible(&mut self, infcx: &InferCtxt<'tcx>) -> Vec<FulfillmentError<'tcx>> {
assert_eq!(self.usable_in_snapshot, infcx.num_open_snapshots());
let mut errors = Vec::new();
for i in 0.. {
if !infcx.tcx.recursion_limit().value_within_limit(i) {
unimplemented!("overflowed on pending obligations: {:?}", self.obligations);
}
let mut has_changed = false;
for obligation in mem::take(&mut self.obligations) {
let goal = obligation.clone().into();
let (changed, certainty, nested_goals) =
match infcx.evaluate_root_goal(goal, GenerateProofTree::IfEnabled).0 {
Ok(result) => result,
Err(NoSolution) => {
errors.push(FulfillmentError {
obligation: obligation.clone(),
code: match goal.predicate.kind().skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Projection(_)) => {
FulfillmentErrorCode::CodeProjectionError(
// FIXME: This could be a `Sorts` if the term is a type
MismatchedProjectionTypes { err: TypeError::Mismatch },
)
}
ty::PredicateKind::AliasRelate(_, _, _) => {
FulfillmentErrorCode::CodeProjectionError(
MismatchedProjectionTypes { err: TypeError::Mismatch },
)
}
ty::PredicateKind::Subtype(pred) => {
let (a, b) = infcx.instantiate_binder_with_placeholders(
goal.predicate.kind().rebind((pred.a, pred.b)),
);
let expected_found = ExpectedFound::new(true, a, b);
FulfillmentErrorCode::CodeSubtypeError(
expected_found,
TypeError::Sorts(expected_found),
)
}
ty::PredicateKind::Coerce(pred) => {
let (a, b) = infcx.instantiate_binder_with_placeholders(
goal.predicate.kind().rebind((pred.a, pred.b)),
);
let expected_found = ExpectedFound::new(false, a, b);
FulfillmentErrorCode::CodeSubtypeError(
expected_found,
TypeError::Sorts(expected_found),
)
}
ty::PredicateKind::Clause(_)
| ty::PredicateKind::ObjectSafe(_)
| ty::PredicateKind::ClosureKind(_, _, _)
| ty::PredicateKind::Ambiguous => {
FulfillmentErrorCode::CodeSelectionError(
SelectionError::Unimplemented,
)
}
ty::PredicateKind::ConstEquate(..) => {
bug!("unexpected goal: {goal:?}")
}
},
root_obligation: obligation,
});
continue;
}
};
// Push any nested goals that we get from unifying our canonical response
// with our obligation onto the fulfillment context.
self.obligations.extend(nested_goals.into_iter().map(|goal| {
Obligation::new(
infcx.tcx,
obligation.cause.clone(),
goal.param_env,
goal.predicate,
)
}));
has_changed |= changed;
match certainty {
Certainty::Yes => {}
Certainty::Maybe(_) => self.obligations.push(obligation),
}
}
if !has_changed {
break;
}
}
errors
}
fn pending_obligations(&self) -> Vec<PredicateObligation<'tcx>> {
self.obligations.clone()
}
fn drain_unstalled_obligations(
&mut self,
_: &InferCtxt<'tcx>,
) -> Vec<PredicateObligation<'tcx>> {
std::mem::take(&mut self.obligations)
}
}