1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
use rustc_index::IndexSlice;
use rustc_middle::ty::{self, Ty};
use rustc_middle::{mir::*, thir::*};
use rustc_span::Span;

use super::{PResult, ParseCtxt, ParseError};

mod instruction;

/// Helper macro for parsing custom MIR.
///
/// Example usage looks something like:
/// ```rust,ignore (incomplete example)
/// parse_by_kind!(
///     self, // : &ParseCtxt
///     expr_id, // what you're matching against
///     "assignment", // the thing you're trying to parse
///     @call("mir_assign", args) => { args[0] }, // match invocations of the `mir_assign` special function
///     ExprKind::Assign { lhs, .. } => { lhs }, // match thir assignment expressions
///     // no need for fallthrough case - reasonable error is automatically generated
/// )
/// ```
macro_rules! parse_by_kind {
    (
        $self:ident,
        $expr_id:expr,
        $expr_name:pat,
        $expected:literal,
        $(
            @call($name:literal, $args:ident) => $call_expr:expr,
        )*
        $(
            $pat:pat => $expr:expr,
        )*
    ) => {{
        let expr_id = $self.preparse($expr_id);
        let expr = &$self.thir[expr_id];
        debug!("Trying to parse {:?} as {}", expr.kind, $expected);
        let $expr_name = expr;
        match &expr.kind {
            $(
                ExprKind::Call { ty, fun: _, args: $args, .. } if {
                    match ty.kind() {
                        ty::FnDef(did, _) => {
                            $self.tcx.is_diagnostic_item(rustc_span::Symbol::intern($name), *did)
                        }
                        _ => false,
                    }
                } => $call_expr,
            )*
            $(
                $pat => $expr,
            )*
            #[allow(unreachable_patterns)]
            _ => return Err($self.expr_error(expr_id, $expected))
        }
    }};
}
pub(crate) use parse_by_kind;

impl<'tcx, 'body> ParseCtxt<'tcx, 'body> {
    /// Expressions should only ever be matched on after preparsing them. This removes extra scopes
    /// we don't care about.
    fn preparse(&self, expr_id: ExprId) -> ExprId {
        let expr = &self.thir[expr_id];
        match expr.kind {
            ExprKind::Scope { value, .. } => self.preparse(value),
            _ => expr_id,
        }
    }

    fn statement_as_expr(&self, stmt_id: StmtId) -> PResult<ExprId> {
        match &self.thir[stmt_id].kind {
            StmtKind::Expr { expr, .. } => Ok(*expr),
            kind @ StmtKind::Let { pattern, .. } => {
                return Err(ParseError {
                    span: pattern.span,
                    item_description: format!("{kind:?}"),
                    expected: "expression".to_string(),
                });
            }
        }
    }

    pub fn parse_args(&mut self, params: &IndexSlice<ParamId, Param<'tcx>>) -> PResult<()> {
        for param in params.iter() {
            let (var, span) = {
                let pat = param.pat.as_ref().unwrap();
                match &pat.kind {
                    PatKind::Binding { var, .. } => (*var, pat.span),
                    _ => {
                        return Err(ParseError {
                            span: pat.span,
                            item_description: format!("{:?}", pat.kind),
                            expected: "local".to_string(),
                        });
                    }
                }
            };
            let decl = LocalDecl::new(param.ty, span);
            let local = self.body.local_decls.push(decl);
            self.local_map.insert(var, local);
        }

        Ok(())
    }

    /// Bodies are of the form:
    ///
    /// ```text
    /// {
    ///     let bb1: BasicBlock;
    ///     let bb2: BasicBlock;
    ///     {
    ///         let RET: _;
    ///         let local1;
    ///         let local2;
    ///
    ///         {
    ///             { // entry block
    ///                 statement1;
    ///                 terminator1
    ///             };
    ///
    ///             bb1 = {
    ///                 statement2;
    ///                 terminator2
    ///             };
    ///
    ///             bb2 = {
    ///                 statement3;
    ///                 terminator3
    ///             }
    ///
    ///             RET
    ///         }
    ///     }
    /// }
    /// ```
    ///
    /// This allows us to easily parse the basic blocks declarations, local declarations, and
    /// basic block definitions in order.
    pub fn parse_body(&mut self, expr_id: ExprId) -> PResult<()> {
        let body = parse_by_kind!(self, expr_id, _, "whole body",
            ExprKind::Block { block } => self.thir[*block].expr.unwrap(),
        );
        let (block_decls, rest) = parse_by_kind!(self, body, _, "body with block decls",
            ExprKind::Block { block } => {
                let block = &self.thir[*block];
                (&block.stmts, block.expr.unwrap())
            },
        );
        self.parse_block_decls(block_decls.iter().copied())?;

        let (local_decls, rest) = parse_by_kind!(self, rest, _, "body with local decls",
            ExprKind::Block { block } => {
                let block = &self.thir[*block];
                (&block.stmts, block.expr.unwrap())
            },
        );
        self.parse_local_decls(local_decls.iter().copied())?;

        let (debuginfo, rest) = parse_by_kind!(self, rest, _, "body with debuginfo",
            ExprKind::Block { block } => {
                let block = &self.thir[*block];
                (&block.stmts, block.expr.unwrap())
            },
        );
        self.parse_debuginfo(debuginfo.iter().copied())?;

        let block_defs = parse_by_kind!(self, rest, _, "body with block defs",
            ExprKind::Block { block } => &self.thir[*block].stmts,
        );
        for (i, block_def) in block_defs.iter().enumerate() {
            let block = self.parse_block_def(self.statement_as_expr(*block_def)?)?;
            self.body.basic_blocks_mut()[BasicBlock::from_usize(i)] = block;
        }

        Ok(())
    }

    fn parse_block_decls(&mut self, stmts: impl Iterator<Item = StmtId>) -> PResult<()> {
        for stmt in stmts {
            let (var, _, _) = self.parse_let_statement(stmt)?;
            let data = BasicBlockData::new(None);
            let block = self.body.basic_blocks_mut().push(data);
            self.block_map.insert(var, block);
        }

        Ok(())
    }

    fn parse_local_decls(&mut self, mut stmts: impl Iterator<Item = StmtId>) -> PResult<()> {
        let (ret_var, ..) = self.parse_let_statement(stmts.next().unwrap())?;
        self.local_map.insert(ret_var, Local::from_u32(0));

        for stmt in stmts {
            let (var, ty, span) = self.parse_let_statement(stmt)?;
            let decl = LocalDecl::new(ty, span);
            let local = self.body.local_decls.push(decl);
            self.local_map.insert(var, local);
        }

        Ok(())
    }

    fn parse_debuginfo(&mut self, stmts: impl Iterator<Item = StmtId>) -> PResult<()> {
        for stmt in stmts {
            let stmt = &self.thir[stmt];
            let expr = match stmt.kind {
                StmtKind::Let { span, .. } => {
                    return Err(ParseError {
                        span,
                        item_description: format!("{:?}", stmt),
                        expected: "debuginfo".to_string(),
                    });
                }
                StmtKind::Expr { expr, .. } => expr,
            };
            let span = self.thir[expr].span;
            let (name, operand) = parse_by_kind!(self, expr, _, "debuginfo",
                @call("mir_debuginfo", args) => {
                    (args[0], args[1])
                },
            );
            let name = parse_by_kind!(self, name, _, "debuginfo",
                ExprKind::Literal { lit, neg: false } => lit,
            );
            let Some(name) = name.node.str() else {
                return Err(ParseError {
                    span,
                    item_description: format!("{:?}", name),
                    expected: "string".to_string(),
                });
            };
            let operand = self.parse_operand(operand)?;
            let value = match operand {
                Operand::Constant(c) => VarDebugInfoContents::Const(*c),
                Operand::Copy(p) | Operand::Move(p) => VarDebugInfoContents::Place(p),
            };
            let dbginfo = VarDebugInfo {
                name,
                source_info: SourceInfo { span, scope: self.source_scope },
                composite: None,
                argument_index: None,
                value,
            };
            self.body.var_debug_info.push(dbginfo);
        }

        Ok(())
    }

    fn parse_let_statement(&mut self, stmt_id: StmtId) -> PResult<(LocalVarId, Ty<'tcx>, Span)> {
        let pattern = match &self.thir[stmt_id].kind {
            StmtKind::Let { pattern, .. } => pattern,
            StmtKind::Expr { expr, .. } => {
                return Err(self.expr_error(*expr, "let statement"));
            }
        };

        self.parse_var(pattern)
    }

    fn parse_var(&mut self, mut pat: &Pat<'tcx>) -> PResult<(LocalVarId, Ty<'tcx>, Span)> {
        // Make sure we throw out any `AscribeUserType` we find
        loop {
            match &pat.kind {
                PatKind::Binding { var, ty, .. } => break Ok((*var, *ty, pat.span)),
                PatKind::AscribeUserType { subpattern, .. } => {
                    pat = subpattern;
                }
                _ => {
                    break Err(ParseError {
                        span: pat.span,
                        item_description: format!("{:?}", pat.kind),
                        expected: "local".to_string(),
                    });
                }
            }
        }
    }

    fn parse_block_def(&self, expr_id: ExprId) -> PResult<BasicBlockData<'tcx>> {
        let block = parse_by_kind!(self, expr_id, _, "basic block",
            ExprKind::Block { block } => &self.thir[*block],
        );

        let mut data = BasicBlockData::new(None);
        for stmt_id in &*block.stmts {
            let stmt = self.statement_as_expr(*stmt_id)?;
            let span = self.thir[stmt].span;
            let statement = self.parse_statement(stmt)?;
            data.statements.push(Statement {
                source_info: SourceInfo { span, scope: self.source_scope },
                kind: statement,
            });
        }

        let Some(trailing) = block.expr else { return Err(self.expr_error(expr_id, "terminator")) };
        let span = self.thir[trailing].span;
        let terminator = self.parse_terminator(trailing)?;
        data.terminator = Some(Terminator {
            source_info: SourceInfo { span, scope: self.source_scope },
            kind: terminator,
        });

        Ok(data)
    }
}