1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
use std::ops::ControlFlow;
use rustc_data_structures::intern::Interned;
use crate::infer::canonical::{CanonicalVarValues, QueryRegionConstraints};
use crate::traits::query::NoSolution;
use crate::traits::{Canonical, DefiningAnchor};
use crate::ty::{
self, FallibleTypeFolder, ToPredicate, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeVisitable,
TypeVisitor,
};
use rustc_span::def_id::DefId;
use super::BuiltinImplSource;
mod cache;
pub mod inspect;
pub use cache::{CacheData, EvaluationCache};
/// A goal is a statement, i.e. `predicate`, we want to prove
/// given some assumptions, i.e. `param_env`.
///
/// Most of the time the `param_env` contains the `where`-bounds of the function
/// we're currently typechecking while the `predicate` is some trait bound.
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, HashStable, TypeFoldable, TypeVisitable)]
pub struct Goal<'tcx, P> {
pub predicate: P,
pub param_env: ty::ParamEnv<'tcx>,
}
impl<'tcx, P> Goal<'tcx, P> {
pub fn new(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
predicate: impl ToPredicate<'tcx, P>,
) -> Goal<'tcx, P> {
Goal { param_env, predicate: predicate.to_predicate(tcx) }
}
/// Updates the goal to one with a different `predicate` but the same `param_env`.
pub fn with<Q>(self, tcx: TyCtxt<'tcx>, predicate: impl ToPredicate<'tcx, Q>) -> Goal<'tcx, Q> {
Goal { param_env: self.param_env, predicate: predicate.to_predicate(tcx) }
}
}
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, HashStable, TypeFoldable, TypeVisitable)]
pub struct Response<'tcx> {
pub certainty: Certainty,
pub var_values: CanonicalVarValues<'tcx>,
/// Additional constraints returned by this query.
pub external_constraints: ExternalConstraints<'tcx>,
}
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, HashStable, TypeFoldable, TypeVisitable)]
pub enum Certainty {
Yes,
Maybe(MaybeCause),
}
impl Certainty {
pub const AMBIGUOUS: Certainty = Certainty::Maybe(MaybeCause::Ambiguity);
pub const OVERFLOW: Certainty = Certainty::Maybe(MaybeCause::Overflow);
/// Use this function to merge the certainty of multiple nested subgoals.
///
/// Given an impl like `impl<T: Foo + Bar> Baz for T {}`, we have 2 nested
/// subgoals whenever we use the impl as a candidate: `T: Foo` and `T: Bar`.
/// If evaluating `T: Foo` results in ambiguity and `T: Bar` results in
/// success, we merge these two responses. This results in ambiguity.
///
/// If we unify ambiguity with overflow, we return overflow. This doesn't matter
/// inside of the solver as we do not distinguish ambiguity from overflow. It does
/// however matter for diagnostics. If `T: Foo` resulted in overflow and `T: Bar`
/// in ambiguity without changing the inference state, we still want to tell the
/// user that `T: Baz` results in overflow.
pub fn unify_with(self, other: Certainty) -> Certainty {
match (self, other) {
(Certainty::Yes, Certainty::Yes) => Certainty::Yes,
(Certainty::Yes, Certainty::Maybe(_)) => other,
(Certainty::Maybe(_), Certainty::Yes) => self,
(Certainty::Maybe(MaybeCause::Ambiguity), Certainty::Maybe(MaybeCause::Ambiguity)) => {
Certainty::Maybe(MaybeCause::Ambiguity)
}
(Certainty::Maybe(MaybeCause::Ambiguity), Certainty::Maybe(MaybeCause::Overflow))
| (Certainty::Maybe(MaybeCause::Overflow), Certainty::Maybe(MaybeCause::Ambiguity))
| (Certainty::Maybe(MaybeCause::Overflow), Certainty::Maybe(MaybeCause::Overflow)) => {
Certainty::Maybe(MaybeCause::Overflow)
}
}
}
}
/// Why we failed to evaluate a goal.
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, HashStable, TypeFoldable, TypeVisitable)]
pub enum MaybeCause {
/// We failed due to ambiguity. This ambiguity can either
/// be a true ambiguity, i.e. there are multiple different answers,
/// or we hit a case where we just don't bother, e.g. `?x: Trait` goals.
Ambiguity,
/// We gave up due to an overflow, most often by hitting the recursion limit.
Overflow,
}
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, HashStable, TypeFoldable, TypeVisitable)]
pub struct QueryInput<'tcx, T> {
pub goal: Goal<'tcx, T>,
pub anchor: DefiningAnchor,
pub predefined_opaques_in_body: PredefinedOpaques<'tcx>,
}
/// Additional constraints returned on success.
#[derive(Debug, PartialEq, Eq, Clone, Hash, HashStable, Default)]
pub struct PredefinedOpaquesData<'tcx> {
pub opaque_types: Vec<(ty::OpaqueTypeKey<'tcx>, Ty<'tcx>)>,
}
#[derive(Debug, PartialEq, Eq, Copy, Clone, Hash, HashStable)]
pub struct PredefinedOpaques<'tcx>(pub(crate) Interned<'tcx, PredefinedOpaquesData<'tcx>>);
impl<'tcx> std::ops::Deref for PredefinedOpaques<'tcx> {
type Target = PredefinedOpaquesData<'tcx>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
pub type CanonicalInput<'tcx, T = ty::Predicate<'tcx>> = Canonical<'tcx, QueryInput<'tcx, T>>;
pub type CanonicalResponse<'tcx> = Canonical<'tcx, Response<'tcx>>;
/// The result of evaluating a canonical query.
///
/// FIXME: We use a different type than the existing canonical queries. This is because
/// we need to add a `Certainty` for `overflow` and may want to restructure this code without
/// having to worry about changes to currently used code. Once we've made progress on this
/// solver, merge the two responses again.
pub type QueryResult<'tcx> = Result<CanonicalResponse<'tcx>, NoSolution>;
#[derive(Debug, PartialEq, Eq, Copy, Clone, Hash, HashStable)]
pub struct ExternalConstraints<'tcx>(pub(crate) Interned<'tcx, ExternalConstraintsData<'tcx>>);
impl<'tcx> std::ops::Deref for ExternalConstraints<'tcx> {
type Target = ExternalConstraintsData<'tcx>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
/// Additional constraints returned on success.
#[derive(Debug, PartialEq, Eq, Clone, Hash, HashStable, Default, TypeVisitable, TypeFoldable)]
pub struct ExternalConstraintsData<'tcx> {
// FIXME: implement this.
pub region_constraints: QueryRegionConstraints<'tcx>,
pub opaque_types: Vec<(ty::OpaqueTypeKey<'tcx>, Ty<'tcx>)>,
}
// FIXME: Having to clone `region_constraints` for folding feels bad and
// probably isn't great wrt performance.
//
// Not sure how to fix this, maybe we should also intern `opaque_types` and
// `region_constraints` here or something.
impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for ExternalConstraints<'tcx> {
fn try_fold_with<F: FallibleTypeFolder<TyCtxt<'tcx>>>(
self,
folder: &mut F,
) -> Result<Self, F::Error> {
Ok(FallibleTypeFolder::interner(folder).mk_external_constraints(ExternalConstraintsData {
region_constraints: self.region_constraints.clone().try_fold_with(folder)?,
opaque_types: self
.opaque_types
.iter()
.map(|opaque| opaque.try_fold_with(folder))
.collect::<Result<_, F::Error>>()?,
}))
}
fn fold_with<F: TypeFolder<TyCtxt<'tcx>>>(self, folder: &mut F) -> Self {
TypeFolder::interner(folder).mk_external_constraints(ExternalConstraintsData {
region_constraints: self.region_constraints.clone().fold_with(folder),
opaque_types: self.opaque_types.iter().map(|opaque| opaque.fold_with(folder)).collect(),
})
}
}
impl<'tcx> TypeVisitable<TyCtxt<'tcx>> for ExternalConstraints<'tcx> {
fn visit_with<V: TypeVisitor<TyCtxt<'tcx>>>(
&self,
visitor: &mut V,
) -> std::ops::ControlFlow<V::BreakTy> {
self.region_constraints.visit_with(visitor)?;
self.opaque_types.visit_with(visitor)?;
ControlFlow::Continue(())
}
}
// FIXME: Having to clone `region_constraints` for folding feels bad and
// probably isn't great wrt performance.
//
// Not sure how to fix this, maybe we should also intern `opaque_types` and
// `region_constraints` here or something.
impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for PredefinedOpaques<'tcx> {
fn try_fold_with<F: FallibleTypeFolder<TyCtxt<'tcx>>>(
self,
folder: &mut F,
) -> Result<Self, F::Error> {
Ok(FallibleTypeFolder::interner(folder).mk_predefined_opaques_in_body(
PredefinedOpaquesData {
opaque_types: self
.opaque_types
.iter()
.map(|opaque| opaque.try_fold_with(folder))
.collect::<Result<_, F::Error>>()?,
},
))
}
fn fold_with<F: TypeFolder<TyCtxt<'tcx>>>(self, folder: &mut F) -> Self {
TypeFolder::interner(folder).mk_predefined_opaques_in_body(PredefinedOpaquesData {
opaque_types: self.opaque_types.iter().map(|opaque| opaque.fold_with(folder)).collect(),
})
}
}
impl<'tcx> TypeVisitable<TyCtxt<'tcx>> for PredefinedOpaques<'tcx> {
fn visit_with<V: TypeVisitor<TyCtxt<'tcx>>>(
&self,
visitor: &mut V,
) -> std::ops::ControlFlow<V::BreakTy> {
self.opaque_types.visit_with(visitor)
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, HashStable)]
pub enum IsNormalizesToHack {
Yes,
No,
}
/// Possible ways the given goal can be proven.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum CandidateSource {
/// A user written impl.
///
/// ## Examples
///
/// ```rust
/// fn main() {
/// let x: Vec<u32> = Vec::new();
/// // This uses the impl from the standard library to prove `Vec<T>: Clone`.
/// let y = x.clone();
/// }
/// ```
Impl(DefId),
/// A builtin impl generated by the compiler. When adding a new special
/// trait, try to use actual impls whenever possible. Builtin impls should
/// only be used in cases where the impl cannot be manually be written.
///
/// Notable examples are auto traits, `Sized`, and `DiscriminantKind`.
/// For a list of all traits with builtin impls, check out the
/// `EvalCtxt::assemble_builtin_impl_candidates` method.
BuiltinImpl(BuiltinImplSource),
/// An assumption from the environment.
///
/// More precisely we've used the `n-th` assumption in the `param_env`.
///
/// ## Examples
///
/// ```rust
/// fn is_clone<T: Clone>(x: T) -> (T, T) {
/// // This uses the assumption `T: Clone` from the `where`-bounds
/// // to prove `T: Clone`.
/// (x.clone(), x)
/// }
/// ```
ParamEnv(usize),
/// If the self type is an alias type, e.g. an opaque type or a projection,
/// we know the bounds on that alias to hold even without knowing its concrete
/// underlying type.
///
/// More precisely this candidate is using the `n-th` bound in the `item_bounds` of
/// the self type.
///
/// ## Examples
///
/// ```rust
/// trait Trait {
/// type Assoc: Clone;
/// }
///
/// fn foo<T: Trait>(x: <T as Trait>::Assoc) {
/// // We prove `<T as Trait>::Assoc` by looking at the bounds on `Assoc` in
/// // in the trait definition.
/// let _y = x.clone();
/// }
/// ```
AliasBound,
}