1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
//! Freshening is the process of replacing unknown variables with fresh types. The idea is that
//! the type, after freshening, contains no inference variables but instead contains either a
//! value for each variable or fresh "arbitrary" types wherever a variable would have been.
//!
//! Freshening is used primarily to get a good type for inserting into a cache. The result
//! summarizes what the type inferencer knows "so far". The primary place it is used right now is
//! in the trait matching algorithm, which needs to be able to cache whether an `impl` self type
//! matches some other type X -- *without* affecting `X`. That means if that if the type `X` is in
//! fact an unbound type variable, we want the match to be regarded as ambiguous, because depending
//! on what type that type variable is ultimately assigned, the match may or may not succeed.
//!
//! To handle closures, freshened types also have to contain the signature and kind of any
//! closure in the local inference context, as otherwise the cache key might be invalidated.
//! The way this is done is somewhat hacky - the closure signature is appended to the args,
//! as well as the closure kind "encoded" as a type. Also, special handling is needed when
//! the closure signature contains a reference to the original closure.
//!
//! Note that you should be careful not to allow the output of freshening to leak to the user in
//! error messages or in any other form. Freshening is only really useful as an internal detail.
//!
//! Because of the manipulation required to handle closures, doing arbitrary operations on
//! freshened types is not recommended. However, in addition to doing equality/hash
//! comparisons (for caching), it is possible to do a `ty::_match` operation between
//! 2 freshened types - this works even with the closure encoding.
//!
//! __An important detail concerning regions.__ The freshener also replaces *all* free regions with
//! 'erased. The reason behind this is that, in general, we do not take region relationships into
//! account when making type-overloaded decisions. This is important because of the design of the
//! region inferencer, which is not based on unification but rather on accumulating and then
//! solving a set of constraints. In contrast, the type inferencer assigns a value to each type
//! variable only once, and it does so as soon as it can, so it is reasonable to ask what the type
//! inferencer knows "so far".
use super::InferCtxt;
use rustc_data_structures::fx::FxHashMap;
use rustc_middle::infer::unify_key::ToType;
use rustc_middle::ty::fold::TypeFolder;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeFoldable, TypeSuperFoldable, TypeVisitableExt};
use std::collections::hash_map::Entry;
pub struct TypeFreshener<'a, 'tcx> {
infcx: &'a InferCtxt<'tcx>,
ty_freshen_count: u32,
const_freshen_count: u32,
ty_freshen_map: FxHashMap<ty::InferTy, Ty<'tcx>>,
const_freshen_map: FxHashMap<ty::InferConst<'tcx>, ty::Const<'tcx>>,
}
impl<'a, 'tcx> TypeFreshener<'a, 'tcx> {
pub fn new(infcx: &'a InferCtxt<'tcx>) -> TypeFreshener<'a, 'tcx> {
TypeFreshener {
infcx,
ty_freshen_count: 0,
const_freshen_count: 0,
ty_freshen_map: Default::default(),
const_freshen_map: Default::default(),
}
}
fn freshen_ty<F>(&mut self, opt_ty: Option<Ty<'tcx>>, key: ty::InferTy, mk_fresh: F) -> Ty<'tcx>
where
F: FnOnce(u32) -> Ty<'tcx>,
{
if let Some(ty) = opt_ty {
return ty.fold_with(self);
}
match self.ty_freshen_map.entry(key) {
Entry::Occupied(entry) => *entry.get(),
Entry::Vacant(entry) => {
let index = self.ty_freshen_count;
self.ty_freshen_count += 1;
let t = mk_fresh(index);
entry.insert(t);
t
}
}
}
fn freshen_const<F>(
&mut self,
opt_ct: Option<ty::Const<'tcx>>,
key: ty::InferConst<'tcx>,
freshener: F,
ty: Ty<'tcx>,
) -> ty::Const<'tcx>
where
F: FnOnce(u32) -> ty::InferConst<'tcx>,
{
if let Some(ct) = opt_ct {
return ct.fold_with(self);
}
match self.const_freshen_map.entry(key) {
Entry::Occupied(entry) => *entry.get(),
Entry::Vacant(entry) => {
let index = self.const_freshen_count;
self.const_freshen_count += 1;
let ct = ty::Const::new_infer(self.infcx.tcx, freshener(index), ty);
entry.insert(ct);
ct
}
}
}
}
impl<'a, 'tcx> TypeFolder<TyCtxt<'tcx>> for TypeFreshener<'a, 'tcx> {
fn interner(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
match *r {
ty::ReLateBound(..) => {
// leave bound regions alone
r
}
ty::ReEarlyBound(..)
| ty::ReFree(_)
| ty::ReVar(_)
| ty::RePlaceholder(..)
| ty::ReStatic
| ty::ReError(_)
| ty::ReErased => self.interner().lifetimes.re_erased,
}
}
#[inline]
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
if !t.has_infer() && !t.has_erasable_regions() {
t
} else {
match *t.kind() {
ty::Infer(v) => self.fold_infer_ty(v).unwrap_or(t),
// This code is hot enough that a non-debug assertion here makes a noticeable
// difference on benchmarks like `wg-grammar`.
#[cfg(debug_assertions)]
ty::Placeholder(..) | ty::Bound(..) => bug!("unexpected type {:?}", t),
_ => t.super_fold_with(self),
}
}
}
fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
match ct.kind() {
ty::ConstKind::Infer(ty::InferConst::Var(v)) => {
let opt_ct = self
.infcx
.inner
.borrow_mut()
.const_unification_table()
.probe_value(v)
.val
.known();
self.freshen_const(opt_ct, ty::InferConst::Var(v), ty::InferConst::Fresh, ct.ty())
}
ty::ConstKind::Infer(ty::InferConst::EffectVar(v)) => {
let opt_ct = self
.infcx
.inner
.borrow_mut()
.effect_unification_table()
.probe_value(v)
.map(|effect| effect.as_const(self.infcx.tcx));
self.freshen_const(
opt_ct,
ty::InferConst::EffectVar(v),
ty::InferConst::Fresh,
ct.ty(),
)
}
ty::ConstKind::Infer(ty::InferConst::Fresh(i)) => {
if i >= self.const_freshen_count {
bug!(
"Encountered a freshend const with id {} \
but our counter is only at {}",
i,
self.const_freshen_count,
);
}
ct
}
ty::ConstKind::Bound(..) | ty::ConstKind::Placeholder(_) => {
bug!("unexpected const {:?}", ct)
}
ty::ConstKind::Param(_)
| ty::ConstKind::Value(_)
| ty::ConstKind::Unevaluated(..)
| ty::ConstKind::Expr(..)
| ty::ConstKind::Error(_) => ct.super_fold_with(self),
}
}
}
impl<'a, 'tcx> TypeFreshener<'a, 'tcx> {
// This is separate from `fold_ty` to keep that method small and inlinable.
#[inline(never)]
fn fold_infer_ty(&mut self, v: ty::InferTy) -> Option<Ty<'tcx>> {
match v {
ty::TyVar(v) => {
let opt_ty = self.infcx.inner.borrow_mut().type_variables().probe(v).known();
Some(self.freshen_ty(opt_ty, ty::TyVar(v), |n| Ty::new_fresh(self.infcx.tcx, n)))
}
ty::IntVar(v) => Some(
self.freshen_ty(
self.infcx
.inner
.borrow_mut()
.int_unification_table()
.probe_value(v)
.map(|v| v.to_type(self.infcx.tcx)),
ty::IntVar(v),
|n| Ty::new_fresh_int(self.infcx.tcx, n),
),
),
ty::FloatVar(v) => Some(
self.freshen_ty(
self.infcx
.inner
.borrow_mut()
.float_unification_table()
.probe_value(v)
.map(|v| v.to_type(self.infcx.tcx)),
ty::FloatVar(v),
|n| Ty::new_fresh_float(self.infcx.tcx, n),
),
),
ty::FreshTy(ct) | ty::FreshIntTy(ct) | ty::FreshFloatTy(ct) => {
if ct >= self.ty_freshen_count {
bug!(
"Encountered a freshend type with id {} \
but our counter is only at {}",
ct,
self.ty_freshen_count
);
}
None
}
}
}
}