1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
use rustc_hir::def::DefKind;
use rustc_hir::{LangItem, CRATE_HIR_ID};
use rustc_middle::mir;
use rustc_middle::mir::interpret::PointerArithmetic;
use rustc_middle::ty::layout::{FnAbiOf, TyAndLayout};
use rustc_middle::ty::{self, TyCtxt};
use rustc_session::lint::builtin::INVALID_ALIGNMENT;
use std::borrow::Borrow;
use std::hash::Hash;
use std::ops::ControlFlow;

use rustc_data_structures::fx::FxIndexMap;
use rustc_data_structures::fx::IndexEntry;
use std::fmt;

use rustc_ast::Mutability;
use rustc_hir::def_id::DefId;
use rustc_middle::mir::AssertMessage;
use rustc_span::symbol::{sym, Symbol};
use rustc_target::abi::{Align, Size};
use rustc_target::spec::abi::Abi as CallAbi;

use crate::errors::{LongRunning, LongRunningWarn};
use crate::interpret::{
    self, compile_time_machine, AllocId, ConstAllocation, FnArg, FnVal, Frame, ImmTy, InterpCx,
    InterpResult, OpTy, PlaceTy, Pointer, Scalar,
};
use crate::{errors, fluent_generated as fluent};

use super::error::*;

/// When hitting this many interpreted terminators we emit a deny by default lint
/// that notfies the user that their constant takes a long time to evaluate. If that's
/// what they intended, they can just allow the lint.
const LINT_TERMINATOR_LIMIT: usize = 2_000_000;
/// The limit used by `-Z tiny-const-eval-limit`. This smaller limit is useful for internal
/// tests not needing to run 30s or more to show some behaviour.
const TINY_LINT_TERMINATOR_LIMIT: usize = 20;
/// After this many interpreted terminators, we start emitting progress indicators at every
/// power of two of interpreted terminators.
const PROGRESS_INDICATOR_START: usize = 4_000_000;

/// Extra machine state for CTFE, and the Machine instance
pub struct CompileTimeInterpreter<'mir, 'tcx> {
    /// The number of terminators that have been evaluated.
    ///
    /// This is used to produce lints informing the user that the compiler is not stuck.
    /// Set to `usize::MAX` to never report anything.
    pub(super) num_evaluated_steps: usize,

    /// The virtual call stack.
    pub(super) stack: Vec<Frame<'mir, 'tcx, AllocId, ()>>,

    /// We need to make sure consts never point to anything mutable, even recursively. That is
    /// relied on for pattern matching on consts with references.
    /// To achieve this, two pieces have to work together:
    /// * Interning makes everything outside of statics immutable.
    /// * Pointers to allocations inside of statics can never leak outside, to a non-static global.
    /// This boolean here controls the second part.
    pub(super) can_access_statics: CanAccessStatics,

    /// Whether to check alignment during evaluation.
    pub(super) check_alignment: CheckAlignment,
}

#[derive(Copy, Clone)]
pub enum CheckAlignment {
    /// Ignore alignment when following relocations.
    /// This is mainly used in interning.
    No,
    /// Hard error when dereferencing a misaligned pointer.
    Error,
    /// Emit a future incompat lint when dereferencing a misaligned pointer.
    FutureIncompat,
}

impl CheckAlignment {
    pub fn should_check(&self) -> bool {
        match self {
            CheckAlignment::No => false,
            CheckAlignment::Error | CheckAlignment::FutureIncompat => true,
        }
    }
}

#[derive(Copy, Clone, PartialEq)]
pub(crate) enum CanAccessStatics {
    No,
    Yes,
}

impl From<bool> for CanAccessStatics {
    fn from(value: bool) -> Self {
        if value { Self::Yes } else { Self::No }
    }
}

impl<'mir, 'tcx> CompileTimeInterpreter<'mir, 'tcx> {
    pub(crate) fn new(
        can_access_statics: CanAccessStatics,
        check_alignment: CheckAlignment,
    ) -> Self {
        CompileTimeInterpreter {
            num_evaluated_steps: 0,
            stack: Vec::new(),
            can_access_statics,
            check_alignment,
        }
    }
}

impl<K: Hash + Eq, V> interpret::AllocMap<K, V> for FxIndexMap<K, V> {
    #[inline(always)]
    fn contains_key<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> bool
    where
        K: Borrow<Q>,
    {
        FxIndexMap::contains_key(self, k)
    }

    #[inline(always)]
    fn insert(&mut self, k: K, v: V) -> Option<V> {
        FxIndexMap::insert(self, k, v)
    }

    #[inline(always)]
    fn remove<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> Option<V>
    where
        K: Borrow<Q>,
    {
        FxIndexMap::remove(self, k)
    }

    #[inline(always)]
    fn filter_map_collect<T>(&self, mut f: impl FnMut(&K, &V) -> Option<T>) -> Vec<T> {
        self.iter().filter_map(move |(k, v)| f(k, &*v)).collect()
    }

    #[inline(always)]
    fn get_or<E>(&self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&V, E> {
        match self.get(&k) {
            Some(v) => Ok(v),
            None => {
                vacant()?;
                bug!("The CTFE machine shouldn't ever need to extend the alloc_map when reading")
            }
        }
    }

    #[inline(always)]
    fn get_mut_or<E>(&mut self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&mut V, E> {
        match self.entry(k) {
            IndexEntry::Occupied(e) => Ok(e.into_mut()),
            IndexEntry::Vacant(e) => {
                let v = vacant()?;
                Ok(e.insert(v))
            }
        }
    }
}

pub(crate) type CompileTimeEvalContext<'mir, 'tcx> =
    InterpCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>>;

#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum MemoryKind {
    Heap,
}

impl fmt::Display for MemoryKind {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            MemoryKind::Heap => write!(f, "heap allocation"),
        }
    }
}

impl interpret::MayLeak for MemoryKind {
    #[inline(always)]
    fn may_leak(self) -> bool {
        match self {
            MemoryKind::Heap => false,
        }
    }
}

impl interpret::MayLeak for ! {
    #[inline(always)]
    fn may_leak(self) -> bool {
        // `self` is uninhabited
        self
    }
}

impl<'mir, 'tcx: 'mir> CompileTimeEvalContext<'mir, 'tcx> {
    /// "Intercept" a function call, because we have something special to do for it.
    /// All `#[rustc_do_not_const_check]` functions should be hooked here.
    /// If this returns `Some` function, which may be `instance` or a different function with
    /// compatible arguments, then evaluation should continue with that function.
    /// If this returns `None`, the function call has been handled and the function has returned.
    fn hook_special_const_fn(
        &mut self,
        instance: ty::Instance<'tcx>,
        args: &[FnArg<'tcx>],
        dest: &PlaceTy<'tcx>,
        ret: Option<mir::BasicBlock>,
    ) -> InterpResult<'tcx, Option<ty::Instance<'tcx>>> {
        let def_id = instance.def_id();

        if self.tcx.has_attr(def_id, sym::rustc_const_panic_str)
            || Some(def_id) == self.tcx.lang_items().begin_panic_fn()
        {
            let args = self.copy_fn_args(args)?;
            // &str or &&str
            assert!(args.len() == 1);

            let mut msg_place = self.deref_pointer(&args[0])?;
            while msg_place.layout.ty.is_ref() {
                msg_place = self.deref_pointer(&msg_place)?;
            }

            let msg = Symbol::intern(self.read_str(&msg_place)?);
            let span = self.find_closest_untracked_caller_location();
            let (file, line, col) = self.location_triple_for_span(span);
            return Err(ConstEvalErrKind::Panic { msg, file, line, col }.into());
        } else if Some(def_id) == self.tcx.lang_items().panic_fmt() {
            // For panic_fmt, call const_panic_fmt instead.
            let const_def_id = self.tcx.require_lang_item(LangItem::ConstPanicFmt, None);
            let new_instance = ty::Instance::resolve(
                *self.tcx,
                ty::ParamEnv::reveal_all(),
                const_def_id,
                instance.args,
            )
            .unwrap()
            .unwrap();

            return Ok(Some(new_instance));
        } else if Some(def_id) == self.tcx.lang_items().align_offset_fn() {
            let args = self.copy_fn_args(args)?;
            // For align_offset, we replace the function call if the pointer has no address.
            match self.align_offset(instance, &args, dest, ret)? {
                ControlFlow::Continue(()) => return Ok(Some(instance)),
                ControlFlow::Break(()) => return Ok(None),
            }
        }
        Ok(Some(instance))
    }

    /// `align_offset(ptr, target_align)` needs special handling in const eval, because the pointer
    /// may not have an address.
    ///
    /// If `ptr` does have a known address, then we return `Continue(())` and the function call should
    /// proceed as normal.
    ///
    /// If `ptr` doesn't have an address, but its underlying allocation's alignment is at most
    /// `target_align`, then we call the function again with an dummy address relative to the
    /// allocation.
    ///
    /// If `ptr` doesn't have an address and `target_align` is stricter than the underlying
    /// allocation's alignment, then we return `usize::MAX` immediately.
    fn align_offset(
        &mut self,
        instance: ty::Instance<'tcx>,
        args: &[OpTy<'tcx>],
        dest: &PlaceTy<'tcx>,
        ret: Option<mir::BasicBlock>,
    ) -> InterpResult<'tcx, ControlFlow<()>> {
        assert_eq!(args.len(), 2);

        let ptr = self.read_pointer(&args[0])?;
        let target_align = self.read_scalar(&args[1])?.to_target_usize(self)?;

        if !target_align.is_power_of_two() {
            throw_ub_custom!(
                fluent::const_eval_align_offset_invalid_align,
                target_align = target_align,
            );
        }

        match self.ptr_try_get_alloc_id(ptr) {
            Ok((alloc_id, offset, _extra)) => {
                let (_size, alloc_align, _kind) = self.get_alloc_info(alloc_id);

                if target_align <= alloc_align.bytes() {
                    // Extract the address relative to the allocation base that is definitely
                    // sufficiently aligned and call `align_offset` again.
                    let addr = ImmTy::from_uint(offset.bytes(), args[0].layout).into();
                    let align = ImmTy::from_uint(target_align, args[1].layout).into();
                    let fn_abi = self.fn_abi_of_instance(instance, ty::List::empty())?;

                    // We replace the entire function call with a "tail call".
                    // Note that this happens before the frame of the original function
                    // is pushed on the stack.
                    self.eval_fn_call(
                        FnVal::Instance(instance),
                        (CallAbi::Rust, fn_abi),
                        &[FnArg::Copy(addr), FnArg::Copy(align)],
                        /* with_caller_location = */ false,
                        dest,
                        ret,
                        mir::UnwindAction::Unreachable,
                    )?;
                    Ok(ControlFlow::Break(()))
                } else {
                    // Not alignable in const, return `usize::MAX`.
                    let usize_max = Scalar::from_target_usize(self.target_usize_max(), self);
                    self.write_scalar(usize_max, dest)?;
                    self.return_to_block(ret)?;
                    Ok(ControlFlow::Break(()))
                }
            }
            Err(_addr) => {
                // The pointer has an address, continue with function call.
                Ok(ControlFlow::Continue(()))
            }
        }
    }

    /// See documentation on the `ptr_guaranteed_cmp` intrinsic.
    fn guaranteed_cmp(&mut self, a: Scalar, b: Scalar) -> InterpResult<'tcx, u8> {
        Ok(match (a, b) {
            // Comparisons between integers are always known.
            (Scalar::Int { .. }, Scalar::Int { .. }) => {
                if a == b {
                    1
                } else {
                    0
                }
            }
            // Comparisons of abstract pointers with null pointers are known if the pointer
            // is in bounds, because if they are in bounds, the pointer can't be null.
            // Inequality with integers other than null can never be known for sure.
            (Scalar::Int(int), ptr @ Scalar::Ptr(..))
            | (ptr @ Scalar::Ptr(..), Scalar::Int(int))
                if int.is_null() && !self.scalar_may_be_null(ptr)? =>
            {
                0
            }
            // Equality with integers can never be known for sure.
            (Scalar::Int { .. }, Scalar::Ptr(..)) | (Scalar::Ptr(..), Scalar::Int { .. }) => 2,
            // FIXME: return a `1` for when both sides are the same pointer, *except* that
            // some things (like functions and vtables) do not have stable addresses
            // so we need to be careful around them (see e.g. #73722).
            // FIXME: return `0` for at least some comparisons where we can reliably
            // determine the result of runtime inequality tests at compile-time.
            // Examples include comparison of addresses in different static items.
            (Scalar::Ptr(..), Scalar::Ptr(..)) => 2,
        })
    }
}

impl<'mir, 'tcx> interpret::Machine<'mir, 'tcx> for CompileTimeInterpreter<'mir, 'tcx> {
    compile_time_machine!(<'mir, 'tcx>);

    type MemoryKind = MemoryKind;

    const PANIC_ON_ALLOC_FAIL: bool = false; // will be raised as a proper error

    #[inline(always)]
    fn enforce_alignment(ecx: &InterpCx<'mir, 'tcx, Self>) -> CheckAlignment {
        ecx.machine.check_alignment
    }

    #[inline(always)]
    fn enforce_validity(ecx: &InterpCx<'mir, 'tcx, Self>, layout: TyAndLayout<'tcx>) -> bool {
        ecx.tcx.sess.opts.unstable_opts.extra_const_ub_checks || layout.abi.is_uninhabited()
    }

    fn alignment_check_failed(
        ecx: &InterpCx<'mir, 'tcx, Self>,
        has: Align,
        required: Align,
        check: CheckAlignment,
    ) -> InterpResult<'tcx, ()> {
        let err = err_ub!(AlignmentCheckFailed { has, required }).into();
        match check {
            CheckAlignment::Error => Err(err),
            CheckAlignment::No => span_bug!(
                ecx.cur_span(),
                "`alignment_check_failed` called when no alignment check requested"
            ),
            CheckAlignment::FutureIncompat => {
                let (_, backtrace) = err.into_parts();
                backtrace.print_backtrace();
                let (span, frames) = super::get_span_and_frames(&ecx);

                ecx.tcx.emit_spanned_lint(
                    INVALID_ALIGNMENT,
                    ecx.stack().iter().find_map(|frame| frame.lint_root()).unwrap_or(CRATE_HIR_ID),
                    span,
                    errors::AlignmentCheckFailed {
                        has: has.bytes(),
                        required: required.bytes(),
                        frames,
                    },
                );
                Ok(())
            }
        }
    }

    fn load_mir(
        ecx: &InterpCx<'mir, 'tcx, Self>,
        instance: ty::InstanceDef<'tcx>,
    ) -> InterpResult<'tcx, &'tcx mir::Body<'tcx>> {
        match instance {
            ty::InstanceDef::Item(def) => {
                if ecx.tcx.is_ctfe_mir_available(def) {
                    Ok(ecx.tcx.mir_for_ctfe(def))
                } else if ecx.tcx.def_kind(def) == DefKind::AssocConst {
                    let guar = ecx.tcx.sess.delay_span_bug(
                        rustc_span::DUMMY_SP,
                        "This is likely a const item that is missing from its impl",
                    );
                    throw_inval!(AlreadyReported(guar.into()));
                } else {
                    // `find_mir_or_eval_fn` checks that this is a const fn before even calling us,
                    // so this should be unreachable.
                    let path = ecx.tcx.def_path_str(def);
                    bug!("trying to call extern function `{path}` at compile-time");
                }
            }
            _ => Ok(ecx.tcx.instance_mir(instance)),
        }
    }

    fn find_mir_or_eval_fn(
        ecx: &mut InterpCx<'mir, 'tcx, Self>,
        orig_instance: ty::Instance<'tcx>,
        _abi: CallAbi,
        args: &[FnArg<'tcx>],
        dest: &PlaceTy<'tcx>,
        ret: Option<mir::BasicBlock>,
        _unwind: mir::UnwindAction, // unwinding is not supported in consts
    ) -> InterpResult<'tcx, Option<(&'mir mir::Body<'tcx>, ty::Instance<'tcx>)>> {
        debug!("find_mir_or_eval_fn: {:?}", orig_instance);

        // Replace some functions.
        let Some(instance) = ecx.hook_special_const_fn(orig_instance, args, dest, ret)? else {
            // Call has already been handled.
            return Ok(None);
        };

        // Only check non-glue functions
        if let ty::InstanceDef::Item(def) = instance.def {
            // Execution might have wandered off into other crates, so we cannot do a stability-
            // sensitive check here. But we can at least rule out functions that are not const at
            // all. That said, we have to allow calling functions inside a trait marked with
            // #[const_trait]. These *are* const-checked!
            // FIXME: why does `is_const_fn_raw` not classify them as const?
            if (!ecx.tcx.is_const_fn_raw(def) && !ecx.tcx.is_const_default_method(def))
                || ecx.tcx.has_attr(def, sym::rustc_do_not_const_check)
            {
                // We certainly do *not* want to actually call the fn
                // though, so be sure we return here.
                throw_unsup_format!("calling non-const function `{}`", instance)
            }
        }

        // This is a const fn. Call it.
        // In case of replacement, we return the *original* instance to make backtraces work out
        // (and we hope this does not confuse the FnAbi checks too much).
        Ok(Some((ecx.load_mir(instance.def, None)?, orig_instance)))
    }

    fn panic_nounwind(ecx: &mut InterpCx<'mir, 'tcx, Self>, msg: &str) -> InterpResult<'tcx> {
        let msg = Symbol::intern(msg);
        let span = ecx.find_closest_untracked_caller_location();
        let (file, line, col) = ecx.location_triple_for_span(span);
        Err(ConstEvalErrKind::Panic { msg, file, line, col }.into())
    }

    fn call_intrinsic(
        ecx: &mut InterpCx<'mir, 'tcx, Self>,
        instance: ty::Instance<'tcx>,
        args: &[OpTy<'tcx>],
        dest: &PlaceTy<'tcx, Self::Provenance>,
        target: Option<mir::BasicBlock>,
        _unwind: mir::UnwindAction,
    ) -> InterpResult<'tcx> {
        // Shared intrinsics.
        if ecx.emulate_intrinsic(instance, args, dest, target)? {
            return Ok(());
        }
        let intrinsic_name = ecx.tcx.item_name(instance.def_id());

        // CTFE-specific intrinsics.
        let Some(ret) = target else {
            throw_unsup_format!("intrinsic `{intrinsic_name}` is not supported at compile-time");
        };
        match intrinsic_name {
            sym::ptr_guaranteed_cmp => {
                let a = ecx.read_scalar(&args[0])?;
                let b = ecx.read_scalar(&args[1])?;
                let cmp = ecx.guaranteed_cmp(a, b)?;
                ecx.write_scalar(Scalar::from_u8(cmp), dest)?;
            }
            sym::const_allocate => {
                let size = ecx.read_scalar(&args[0])?.to_target_usize(ecx)?;
                let align = ecx.read_scalar(&args[1])?.to_target_usize(ecx)?;

                let align = match Align::from_bytes(align) {
                    Ok(a) => a,
                    Err(err) => throw_ub_custom!(
                        fluent::const_eval_invalid_align_details,
                        name = "const_allocate",
                        err_kind = err.diag_ident(),
                        align = err.align()
                    ),
                };

                let ptr = ecx.allocate_ptr(
                    Size::from_bytes(size as u64),
                    align,
                    interpret::MemoryKind::Machine(MemoryKind::Heap),
                )?;
                ecx.write_pointer(ptr, dest)?;
            }
            sym::const_deallocate => {
                let ptr = ecx.read_pointer(&args[0])?;
                let size = ecx.read_scalar(&args[1])?.to_target_usize(ecx)?;
                let align = ecx.read_scalar(&args[2])?.to_target_usize(ecx)?;

                let size = Size::from_bytes(size);
                let align = match Align::from_bytes(align) {
                    Ok(a) => a,
                    Err(err) => throw_ub_custom!(
                        fluent::const_eval_invalid_align_details,
                        name = "const_deallocate",
                        err_kind = err.diag_ident(),
                        align = err.align()
                    ),
                };

                // If an allocation is created in an another const,
                // we don't deallocate it.
                let (alloc_id, _, _) = ecx.ptr_get_alloc_id(ptr)?;
                let is_allocated_in_another_const = matches!(
                    ecx.tcx.try_get_global_alloc(alloc_id),
                    Some(interpret::GlobalAlloc::Memory(_))
                );

                if !is_allocated_in_another_const {
                    ecx.deallocate_ptr(
                        ptr,
                        Some((size, align)),
                        interpret::MemoryKind::Machine(MemoryKind::Heap),
                    )?;
                }
            }
            _ => {
                throw_unsup_format!(
                    "intrinsic `{intrinsic_name}` is not supported at compile-time"
                );
            }
        }

        ecx.go_to_block(ret);
        Ok(())
    }

    fn assert_panic(
        ecx: &mut InterpCx<'mir, 'tcx, Self>,
        msg: &AssertMessage<'tcx>,
        _unwind: mir::UnwindAction,
    ) -> InterpResult<'tcx> {
        use rustc_middle::mir::AssertKind::*;
        // Convert `AssertKind<Operand>` to `AssertKind<Scalar>`.
        let eval_to_int =
            |op| ecx.read_immediate(&ecx.eval_operand(op, None)?).map(|x| x.to_const_int());
        let err = match msg {
            BoundsCheck { len, index } => {
                let len = eval_to_int(len)?;
                let index = eval_to_int(index)?;
                BoundsCheck { len, index }
            }
            Overflow(op, l, r) => Overflow(*op, eval_to_int(l)?, eval_to_int(r)?),
            OverflowNeg(op) => OverflowNeg(eval_to_int(op)?),
            DivisionByZero(op) => DivisionByZero(eval_to_int(op)?),
            RemainderByZero(op) => RemainderByZero(eval_to_int(op)?),
            ResumedAfterReturn(generator_kind) => ResumedAfterReturn(*generator_kind),
            ResumedAfterPanic(generator_kind) => ResumedAfterPanic(*generator_kind),
            MisalignedPointerDereference { ref required, ref found } => {
                MisalignedPointerDereference {
                    required: eval_to_int(required)?,
                    found: eval_to_int(found)?,
                }
            }
        };
        Err(ConstEvalErrKind::AssertFailure(err).into())
    }

    fn binary_ptr_op(
        _ecx: &InterpCx<'mir, 'tcx, Self>,
        _bin_op: mir::BinOp,
        _left: &ImmTy<'tcx>,
        _right: &ImmTy<'tcx>,
    ) -> InterpResult<'tcx, (ImmTy<'tcx>, bool)> {
        throw_unsup_format!("pointer arithmetic or comparison is not supported at compile-time");
    }

    fn increment_const_eval_counter(ecx: &mut InterpCx<'mir, 'tcx, Self>) -> InterpResult<'tcx> {
        // The step limit has already been hit in a previous call to `increment_const_eval_counter`.

        if let Some(new_steps) = ecx.machine.num_evaluated_steps.checked_add(1) {
            let (limit, start) = if ecx.tcx.sess.opts.unstable_opts.tiny_const_eval_limit {
                (TINY_LINT_TERMINATOR_LIMIT, TINY_LINT_TERMINATOR_LIMIT)
            } else {
                (LINT_TERMINATOR_LIMIT, PROGRESS_INDICATOR_START)
            };

            ecx.machine.num_evaluated_steps = new_steps;
            // By default, we have a *deny* lint kicking in after some time
            // to ensure `loop {}` doesn't just go forever.
            // In case that lint got reduced, in particular for `--cap-lint` situations, we also
            // have a hard warning shown every now and then for really long executions.
            if new_steps == limit {
                // By default, we stop after a million steps, but the user can disable this lint
                // to be able to run until the heat death of the universe or power loss, whichever
                // comes first.
                let hir_id = ecx.best_lint_scope();
                let is_error = ecx
                    .tcx
                    .lint_level_at_node(
                        rustc_session::lint::builtin::LONG_RUNNING_CONST_EVAL,
                        hir_id,
                    )
                    .0
                    .is_error();
                let span = ecx.cur_span();
                ecx.tcx.emit_spanned_lint(
                    rustc_session::lint::builtin::LONG_RUNNING_CONST_EVAL,
                    hir_id,
                    span,
                    LongRunning { item_span: ecx.tcx.span },
                );
                // If this was a hard error, don't bother continuing evaluation.
                if is_error {
                    let guard = ecx
                        .tcx
                        .sess
                        .delay_span_bug(span, "The deny lint should have already errored");
                    throw_inval!(AlreadyReported(guard.into()));
                }
            } else if new_steps > start && new_steps.is_power_of_two() {
                // Only report after a certain number of terminators have been evaluated and the
                // current number of evaluated terminators is a power of 2. The latter gives us a cheap
                // way to implement exponential backoff.
                let span = ecx.cur_span();
                ecx.tcx.sess.emit_warning(LongRunningWarn { span, item_span: ecx.tcx.span });
            }
        }

        Ok(())
    }

    #[inline(always)]
    fn expose_ptr(
        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
        _ptr: Pointer<AllocId>,
    ) -> InterpResult<'tcx> {
        // This is only reachable with -Zunleash-the-miri-inside-of-you.
        throw_unsup_format!("exposing pointers is not possible at compile-time")
    }

    #[inline(always)]
    fn init_frame_extra(
        ecx: &mut InterpCx<'mir, 'tcx, Self>,
        frame: Frame<'mir, 'tcx>,
    ) -> InterpResult<'tcx, Frame<'mir, 'tcx>> {
        // Enforce stack size limit. Add 1 because this is run before the new frame is pushed.
        if !ecx.recursion_limit.value_within_limit(ecx.stack().len() + 1) {
            throw_exhaust!(StackFrameLimitReached)
        } else {
            Ok(frame)
        }
    }

    #[inline(always)]
    fn stack<'a>(
        ecx: &'a InterpCx<'mir, 'tcx, Self>,
    ) -> &'a [Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>] {
        &ecx.machine.stack
    }

    #[inline(always)]
    fn stack_mut<'a>(
        ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
    ) -> &'a mut Vec<Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>> {
        &mut ecx.machine.stack
    }

    fn before_access_global(
        _tcx: TyCtxt<'tcx>,
        machine: &Self,
        alloc_id: AllocId,
        alloc: ConstAllocation<'tcx>,
        static_def_id: Option<DefId>,
        is_write: bool,
    ) -> InterpResult<'tcx> {
        let alloc = alloc.inner();
        if is_write {
            // Write access. These are never allowed, but we give a targeted error message.
            match alloc.mutability {
                Mutability::Not => Err(err_ub!(WriteToReadOnly(alloc_id)).into()),
                Mutability::Mut => Err(ConstEvalErrKind::ModifiedGlobal.into()),
            }
        } else {
            // Read access. These are usually allowed, with some exceptions.
            if machine.can_access_statics == CanAccessStatics::Yes {
                // Machine configuration allows us read from anything (e.g., `static` initializer).
                Ok(())
            } else if static_def_id.is_some() {
                // Machine configuration does not allow us to read statics
                // (e.g., `const` initializer).
                // See const_eval::machine::MemoryExtra::can_access_statics for why
                // this check is so important: if we could read statics, we could read pointers
                // to mutable allocations *inside* statics. These allocations are not themselves
                // statics, so pointers to them can get around the check in `validity.rs`.
                Err(ConstEvalErrKind::ConstAccessesStatic.into())
            } else {
                // Immutable global, this read is fine.
                // But make sure we never accept a read from something mutable, that would be
                // unsound. The reason is that as the content of this allocation may be different
                // now and at run-time, so if we permit reading now we might return the wrong value.
                assert_eq!(alloc.mutability, Mutability::Not);
                Ok(())
            }
        }
    }
}

// Please do not add any code below the above `Machine` trait impl. I (oli-obk) plan more cleanups
// so we can end up having a file with just that impl, but for now, let's keep the impl discoverable
// at the bottom of this file.