1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
//! HIR walker for walking the contents of nodes.
//!
//! Here are the three available patterns for the visitor strategy,
//! in roughly the order of desirability:
//!
//! 1. **Shallow visit**: Get a simple callback for every item (or item-like thing) in the HIR.
//!    - Example: find all items with a `#[foo]` attribute on them.
//!    - How: Use the `hir_crate_items` or `hir_module_items` query to traverse over item-like ids
//!       (ItemId, TraitItemId, etc.) and use tcx.def_kind and `tcx.hir().item*(id)` to filter and
//!       access actual item-like thing, respectively.
//!    - Pro: Efficient; just walks the lists of item ids and gives users control whether to access
//!       the hir_owners themselves or not.
//!    - Con: Don't get information about nesting
//!    - Con: Don't have methods for specific bits of HIR, like "on
//!      every expr, do this".
//! 2. **Deep visit**: Want to scan for specific kinds of HIR nodes within
//!    an item, but don't care about how item-like things are nested
//!    within one another.
//!    - Example: Examine each expression to look for its type and do some check or other.
//!    - How: Implement `intravisit::Visitor` and override the `NestedFilter` type to
//!      `nested_filter::OnlyBodies` (and implement `nested_visit_map`), and use
//!      `tcx.hir().visit_all_item_likes_in_crate(&mut visitor)`. Within your
//!      `intravisit::Visitor` impl, implement methods like `visit_expr()` (don't forget to invoke
//!      `intravisit::walk_expr()` to keep walking the subparts).
//!    - Pro: Visitor methods for any kind of HIR node, not just item-like things.
//!    - Pro: Integrates well into dependency tracking.
//!    - Con: Don't get information about nesting between items
//! 3. **Nested visit**: Want to visit the whole HIR and you care about the nesting between
//!    item-like things.
//!    - Example: Lifetime resolution, which wants to bring lifetimes declared on the
//!      impl into scope while visiting the impl-items, and then back out again.
//!    - How: Implement `intravisit::Visitor` and override the `NestedFilter` type to
//!      `nested_filter::All` (and implement `nested_visit_map`). Walk your crate with
//!      `tcx.hir().walk_toplevel_module(visitor)` invoked on `tcx.hir().krate()`.
//!    - Pro: Visitor methods for any kind of HIR node, not just item-like things.
//!    - Pro: Preserves nesting information
//!    - Con: Does not integrate well into dependency tracking.
//!
//! If you have decided to use this visitor, here are some general
//! notes on how to do so:
//!
//! Each overridden visit method has full control over what
//! happens with its node, it can do its own traversal of the node's children,
//! call `intravisit::walk_*` to apply the default traversal algorithm, or prevent
//! deeper traversal by doing nothing.
//!
//! When visiting the HIR, the contents of nested items are NOT visited
//! by default. This is different from the AST visitor, which does a deep walk.
//! Hence this module is called `intravisit`; see the method `visit_nested_item`
//! for more details.
//!
//! Note: it is an important invariant that the default visitor walks
//! the body of a function in "execution order" - more concretely, if
//! we consider the reverse post-order (RPO) of the CFG implied by the HIR,
//! then a pre-order traversal of the HIR is consistent with the CFG RPO
//! on the *initial CFG point* of each HIR node, while a post-order traversal
//! of the HIR is consistent with the CFG RPO on each *final CFG point* of
//! each CFG node.
//!
//! One thing that follows is that if HIR node A always starts/ends executing
//! before HIR node B, then A appears in traversal pre/postorder before B,
//! respectively. (This follows from RPO respecting CFG domination).
//!
//! This order consistency is required in a few places in rustc, for
//! example generator inference, and possibly also HIR borrowck.

use crate::hir::*;
use rustc_ast::walk_list;
use rustc_ast::{Attribute, Label};
use rustc_span::def_id::LocalDefId;
use rustc_span::symbol::{Ident, Symbol};
use rustc_span::Span;

pub trait IntoVisitor<'hir> {
    type Visitor: Visitor<'hir>;
    fn into_visitor(&self) -> Self::Visitor;
}

#[derive(Copy, Clone, Debug)]
pub enum FnKind<'a> {
    /// `#[xxx] pub async/const/extern "Abi" fn foo()`
    ItemFn(Ident, &'a Generics<'a>, FnHeader),

    /// `fn foo(&self)`
    Method(Ident, &'a FnSig<'a>),

    /// `|x, y| {}`
    Closure,
}

impl<'a> FnKind<'a> {
    pub fn header(&self) -> Option<&FnHeader> {
        match *self {
            FnKind::ItemFn(_, _, ref header) => Some(header),
            FnKind::Method(_, ref sig) => Some(&sig.header),
            FnKind::Closure => None,
        }
    }

    pub fn constness(self) -> Constness {
        self.header().map_or(Constness::NotConst, |header| header.constness)
    }

    pub fn asyncness(self) -> IsAsync {
        self.header().map_or(IsAsync::NotAsync, |header| header.asyncness)
    }
}

/// An abstract representation of the HIR `rustc_middle::hir::map::Map`.
pub trait Map<'hir> {
    /// Retrieves the `Node` corresponding to `id`, returning `None` if cannot be found.
    fn find(&self, hir_id: HirId) -> Option<Node<'hir>>;
    fn body(&self, id: BodyId) -> &'hir Body<'hir>;
    fn item(&self, id: ItemId) -> &'hir Item<'hir>;
    fn trait_item(&self, id: TraitItemId) -> &'hir TraitItem<'hir>;
    fn impl_item(&self, id: ImplItemId) -> &'hir ImplItem<'hir>;
    fn foreign_item(&self, id: ForeignItemId) -> &'hir ForeignItem<'hir>;
}

// Used when no map is actually available, forcing manual implementation of nested visitors.
impl<'hir> Map<'hir> for ! {
    fn find(&self, _: HirId) -> Option<Node<'hir>> {
        *self;
    }
    fn body(&self, _: BodyId) -> &'hir Body<'hir> {
        *self;
    }
    fn item(&self, _: ItemId) -> &'hir Item<'hir> {
        *self;
    }
    fn trait_item(&self, _: TraitItemId) -> &'hir TraitItem<'hir> {
        *self;
    }
    fn impl_item(&self, _: ImplItemId) -> &'hir ImplItem<'hir> {
        *self;
    }
    fn foreign_item(&self, _: ForeignItemId) -> &'hir ForeignItem<'hir> {
        *self;
    }
}

pub mod nested_filter {
    use super::Map;

    /// Specifies what nested things a visitor wants to visit. By "nested
    /// things", we are referring to bits of HIR that are not directly embedded
    /// within one another but rather indirectly, through a table in the crate.
    /// This is done to control dependencies during incremental compilation: the
    /// non-inline bits of HIR can be tracked and hashed separately.
    ///
    /// The most common choice is `OnlyBodies`, which will cause the visitor to
    /// visit fn bodies for fns that it encounters, and closure bodies, but
    /// skip over nested item-like things.
    ///
    /// See the comments at [`rustc_hir::intravisit`] for more details on the overall
    /// visit strategy.
    pub trait NestedFilter<'hir> {
        type Map: Map<'hir>;

        /// Whether the visitor visits nested "item-like" things.
        /// E.g., item, impl-item.
        const INTER: bool;
        /// Whether the visitor visits "intra item-like" things.
        /// E.g., function body, closure, `AnonConst`
        const INTRA: bool;
    }

    /// Do not visit any nested things. When you add a new
    /// "non-nested" thing, you will want to audit such uses to see if
    /// they remain valid.
    ///
    /// Use this if you are only walking some particular kind of tree
    /// (i.e., a type, or fn signature) and you don't want to thread a
    /// HIR map around.
    pub struct None(());
    impl NestedFilter<'_> for None {
        type Map = !;
        const INTER: bool = false;
        const INTRA: bool = false;
    }
}

use nested_filter::NestedFilter;

/// Each method of the Visitor trait is a hook to be potentially
/// overridden. Each method's default implementation recursively visits
/// the substructure of the input via the corresponding `walk` method;
/// e.g., the `visit_mod` method by default calls `intravisit::walk_mod`.
///
/// Note that this visitor does NOT visit nested items by default
/// (this is why the module is called `intravisit`, to distinguish it
/// from the AST's `visit` module, which acts differently). If you
/// simply want to visit all items in the crate in some order, you
/// should call `tcx.hir().visit_all_item_likes_in_crate`. Otherwise, see the comment
/// on `visit_nested_item` for details on how to visit nested items.
///
/// If you want to ensure that your code handles every variant
/// explicitly, you need to override each method. (And you also need
/// to monitor future changes to `Visitor` in case a new method with a
/// new default implementation gets introduced.)
pub trait Visitor<'v>: Sized {
    // this type should not be overridden, it exists for convenient usage as `Self::Map`
    type Map: Map<'v> = <Self::NestedFilter as NestedFilter<'v>>::Map;

    ///////////////////////////////////////////////////////////////////////////
    // Nested items.

    /// Override this type to control which nested HIR are visited; see
    /// [`NestedFilter`] for details. If you override this type, you
    /// must also override [`nested_visit_map`](Self::nested_visit_map).
    ///
    /// **If for some reason you want the nested behavior, but don't
    /// have a `Map` at your disposal:** then override the
    /// `visit_nested_XXX` methods. If a new `visit_nested_XXX` variant is
    /// added in the future, it will cause a panic which can be detected
    /// and fixed appropriately.
    type NestedFilter: NestedFilter<'v> = nested_filter::None;

    /// If `type NestedFilter` is set to visit nested items, this method
    /// must also be overridden to provide a map to retrieve nested items.
    fn nested_visit_map(&mut self) -> Self::Map {
        panic!(
            "nested_visit_map must be implemented or consider using \
            `type NestedFilter = nested_filter::None` (the default)"
        );
    }

    /// Invoked when a nested item is encountered. By default, when
    /// `Self::NestedFilter` is `nested_filter::None`, this method does
    /// nothing. **You probably don't want to override this method** --
    /// instead, override [`Self::NestedFilter`] or use the "shallow" or
    /// "deep" visit patterns described at
    /// [`rustc_hir::intravisit`]. The only reason to override
    /// this method is if you want a nested pattern but cannot supply a
    /// [`Map`]; see `nested_visit_map` for advice.
    fn visit_nested_item(&mut self, id: ItemId) {
        if Self::NestedFilter::INTER {
            let item = self.nested_visit_map().item(id);
            self.visit_item(item);
        }
    }

    /// Like `visit_nested_item()`, but for trait items. See
    /// `visit_nested_item()` for advice on when to override this
    /// method.
    fn visit_nested_trait_item(&mut self, id: TraitItemId) {
        if Self::NestedFilter::INTER {
            let item = self.nested_visit_map().trait_item(id);
            self.visit_trait_item(item);
        }
    }

    /// Like `visit_nested_item()`, but for impl items. See
    /// `visit_nested_item()` for advice on when to override this
    /// method.
    fn visit_nested_impl_item(&mut self, id: ImplItemId) {
        if Self::NestedFilter::INTER {
            let item = self.nested_visit_map().impl_item(id);
            self.visit_impl_item(item);
        }
    }

    /// Like `visit_nested_item()`, but for foreign items. See
    /// `visit_nested_item()` for advice on when to override this
    /// method.
    fn visit_nested_foreign_item(&mut self, id: ForeignItemId) {
        if Self::NestedFilter::INTER {
            let item = self.nested_visit_map().foreign_item(id);
            self.visit_foreign_item(item);
        }
    }

    /// Invoked to visit the body of a function, method or closure. Like
    /// `visit_nested_item`, does nothing by default unless you override
    /// `Self::NestedFilter`.
    fn visit_nested_body(&mut self, id: BodyId) {
        if Self::NestedFilter::INTRA {
            let body = self.nested_visit_map().body(id);
            self.visit_body(body);
        }
    }

    fn visit_param(&mut self, param: &'v Param<'v>) {
        walk_param(self, param)
    }

    /// Visits the top-level item and (optionally) nested items / impl items. See
    /// `visit_nested_item` for details.
    fn visit_item(&mut self, i: &'v Item<'v>) {
        walk_item(self, i)
    }

    fn visit_body(&mut self, b: &'v Body<'v>) {
        walk_body(self, b);
    }

    ///////////////////////////////////////////////////////////////////////////

    fn visit_id(&mut self, _hir_id: HirId) {
        // Nothing to do.
    }
    fn visit_name(&mut self, _name: Symbol) {
        // Nothing to do.
    }
    fn visit_ident(&mut self, ident: Ident) {
        walk_ident(self, ident)
    }
    fn visit_mod(&mut self, m: &'v Mod<'v>, _s: Span, n: HirId) {
        walk_mod(self, m, n)
    }
    fn visit_foreign_item(&mut self, i: &'v ForeignItem<'v>) {
        walk_foreign_item(self, i)
    }
    fn visit_local(&mut self, l: &'v Local<'v>) {
        walk_local(self, l)
    }
    fn visit_block(&mut self, b: &'v Block<'v>) {
        walk_block(self, b)
    }
    fn visit_stmt(&mut self, s: &'v Stmt<'v>) {
        walk_stmt(self, s)
    }
    fn visit_arm(&mut self, a: &'v Arm<'v>) {
        walk_arm(self, a)
    }
    fn visit_pat(&mut self, p: &'v Pat<'v>) {
        walk_pat(self, p)
    }
    fn visit_pat_field(&mut self, f: &'v PatField<'v>) {
        walk_pat_field(self, f)
    }
    fn visit_array_length(&mut self, len: &'v ArrayLen) {
        walk_array_len(self, len)
    }
    fn visit_anon_const(&mut self, c: &'v AnonConst) {
        walk_anon_const(self, c)
    }
    fn visit_inline_const(&mut self, c: &'v ConstBlock) {
        walk_inline_const(self, c)
    }
    fn visit_expr(&mut self, ex: &'v Expr<'v>) {
        walk_expr(self, ex)
    }
    fn visit_let_expr(&mut self, lex: &'v Let<'v>) {
        walk_let_expr(self, lex)
    }
    fn visit_expr_field(&mut self, field: &'v ExprField<'v>) {
        walk_expr_field(self, field)
    }
    fn visit_ty(&mut self, t: &'v Ty<'v>) {
        walk_ty(self, t)
    }
    fn visit_generic_param(&mut self, p: &'v GenericParam<'v>) {
        walk_generic_param(self, p)
    }
    fn visit_const_param_default(&mut self, _param: HirId, ct: &'v AnonConst) {
        walk_const_param_default(self, ct)
    }
    fn visit_generics(&mut self, g: &'v Generics<'v>) {
        walk_generics(self, g)
    }
    fn visit_where_predicate(&mut self, predicate: &'v WherePredicate<'v>) {
        walk_where_predicate(self, predicate)
    }
    fn visit_fn_ret_ty(&mut self, ret_ty: &'v FnRetTy<'v>) {
        walk_fn_ret_ty(self, ret_ty)
    }
    fn visit_fn_decl(&mut self, fd: &'v FnDecl<'v>) {
        walk_fn_decl(self, fd)
    }
    fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v FnDecl<'v>, b: BodyId, _: Span, id: LocalDefId) {
        walk_fn(self, fk, fd, b, id)
    }
    fn visit_use(&mut self, path: &'v UsePath<'v>, hir_id: HirId) {
        walk_use(self, path, hir_id)
    }
    fn visit_trait_item(&mut self, ti: &'v TraitItem<'v>) {
        walk_trait_item(self, ti)
    }
    fn visit_trait_item_ref(&mut self, ii: &'v TraitItemRef) {
        walk_trait_item_ref(self, ii)
    }
    fn visit_impl_item(&mut self, ii: &'v ImplItem<'v>) {
        walk_impl_item(self, ii)
    }
    fn visit_foreign_item_ref(&mut self, ii: &'v ForeignItemRef) {
        walk_foreign_item_ref(self, ii)
    }
    fn visit_impl_item_ref(&mut self, ii: &'v ImplItemRef) {
        walk_impl_item_ref(self, ii)
    }
    fn visit_trait_ref(&mut self, t: &'v TraitRef<'v>) {
        walk_trait_ref(self, t)
    }
    fn visit_param_bound(&mut self, bounds: &'v GenericBound<'v>) {
        walk_param_bound(self, bounds)
    }
    fn visit_poly_trait_ref(&mut self, t: &'v PolyTraitRef<'v>) {
        walk_poly_trait_ref(self, t)
    }
    fn visit_variant_data(&mut self, s: &'v VariantData<'v>) {
        walk_struct_def(self, s)
    }
    fn visit_field_def(&mut self, s: &'v FieldDef<'v>) {
        walk_field_def(self, s)
    }
    fn visit_enum_def(&mut self, enum_definition: &'v EnumDef<'v>, item_id: HirId) {
        walk_enum_def(self, enum_definition, item_id)
    }
    fn visit_variant(&mut self, v: &'v Variant<'v>) {
        walk_variant(self, v)
    }
    fn visit_label(&mut self, label: &'v Label) {
        walk_label(self, label)
    }
    fn visit_infer(&mut self, inf: &'v InferArg) {
        walk_inf(self, inf);
    }
    fn visit_generic_arg(&mut self, generic_arg: &'v GenericArg<'v>) {
        walk_generic_arg(self, generic_arg);
    }
    fn visit_lifetime(&mut self, lifetime: &'v Lifetime) {
        walk_lifetime(self, lifetime)
    }
    // The span is that of the surrounding type/pattern/expr/whatever.
    fn visit_qpath(&mut self, qpath: &'v QPath<'v>, id: HirId, _span: Span) {
        walk_qpath(self, qpath, id)
    }
    fn visit_path(&mut self, path: &Path<'v>, _id: HirId) {
        walk_path(self, path)
    }
    fn visit_path_segment(&mut self, path_segment: &'v PathSegment<'v>) {
        walk_path_segment(self, path_segment)
    }
    fn visit_generic_args(&mut self, generic_args: &'v GenericArgs<'v>) {
        walk_generic_args(self, generic_args)
    }
    fn visit_assoc_type_binding(&mut self, type_binding: &'v TypeBinding<'v>) {
        walk_assoc_type_binding(self, type_binding)
    }
    fn visit_attribute(&mut self, _attr: &'v Attribute) {}
    fn visit_associated_item_kind(&mut self, kind: &'v AssocItemKind) {
        walk_associated_item_kind(self, kind);
    }
    fn visit_defaultness(&mut self, defaultness: &'v Defaultness) {
        walk_defaultness(self, defaultness);
    }
    fn visit_inline_asm(&mut self, asm: &'v InlineAsm<'v>, id: HirId) {
        walk_inline_asm(self, asm, id);
    }
}

pub fn walk_param<'v, V: Visitor<'v>>(visitor: &mut V, param: &'v Param<'v>) {
    visitor.visit_id(param.hir_id);
    visitor.visit_pat(param.pat);
}

pub fn walk_item<'v, V: Visitor<'v>>(visitor: &mut V, item: &'v Item<'v>) {
    visitor.visit_ident(item.ident);
    match item.kind {
        ItemKind::ExternCrate(orig_name) => {
            visitor.visit_id(item.hir_id());
            if let Some(orig_name) = orig_name {
                visitor.visit_name(orig_name);
            }
        }
        ItemKind::Use(ref path, _) => {
            visitor.visit_use(path, item.hir_id());
        }
        ItemKind::Static(ref typ, _, body) => {
            visitor.visit_id(item.hir_id());
            visitor.visit_ty(typ);
            visitor.visit_nested_body(body);
        }
        ItemKind::Const(ref typ, ref generics, body) => {
            visitor.visit_id(item.hir_id());
            visitor.visit_ty(typ);
            visitor.visit_generics(generics);
            visitor.visit_nested_body(body);
        }
        ItemKind::Fn(ref sig, ref generics, body_id) => {
            visitor.visit_id(item.hir_id());
            visitor.visit_fn(
                FnKind::ItemFn(item.ident, generics, sig.header),
                sig.decl,
                body_id,
                item.span,
                item.owner_id.def_id,
            )
        }
        ItemKind::Macro(..) => {
            visitor.visit_id(item.hir_id());
        }
        ItemKind::Mod(ref module) => {
            // `visit_mod()` takes care of visiting the `Item`'s `HirId`.
            visitor.visit_mod(module, item.span, item.hir_id())
        }
        ItemKind::ForeignMod { abi: _, items } => {
            visitor.visit_id(item.hir_id());
            walk_list!(visitor, visit_foreign_item_ref, items);
        }
        ItemKind::GlobalAsm(asm) => {
            visitor.visit_id(item.hir_id());
            visitor.visit_inline_asm(asm, item.hir_id());
        }
        ItemKind::TyAlias(ref ty, ref generics) => {
            visitor.visit_id(item.hir_id());
            visitor.visit_ty(ty);
            visitor.visit_generics(generics)
        }
        ItemKind::OpaqueTy(&OpaqueTy { generics, bounds, .. }) => {
            visitor.visit_id(item.hir_id());
            walk_generics(visitor, generics);
            walk_list!(visitor, visit_param_bound, bounds);
        }
        ItemKind::Enum(ref enum_definition, ref generics) => {
            visitor.visit_generics(generics);
            // `visit_enum_def()` takes care of visiting the `Item`'s `HirId`.
            visitor.visit_enum_def(enum_definition, item.hir_id())
        }
        ItemKind::Impl(Impl {
            unsafety: _,
            defaultness: _,
            polarity: _,
            defaultness_span: _,
            ref generics,
            ref of_trait,
            ref self_ty,
            items,
        }) => {
            visitor.visit_id(item.hir_id());
            visitor.visit_generics(generics);
            walk_list!(visitor, visit_trait_ref, of_trait);
            visitor.visit_ty(self_ty);
            walk_list!(visitor, visit_impl_item_ref, *items);
        }
        ItemKind::Struct(ref struct_definition, ref generics)
        | ItemKind::Union(ref struct_definition, ref generics) => {
            visitor.visit_generics(generics);
            visitor.visit_id(item.hir_id());
            visitor.visit_variant_data(struct_definition);
        }
        ItemKind::Trait(.., ref generics, bounds, trait_item_refs) => {
            visitor.visit_id(item.hir_id());
            visitor.visit_generics(generics);
            walk_list!(visitor, visit_param_bound, bounds);
            walk_list!(visitor, visit_trait_item_ref, trait_item_refs);
        }
        ItemKind::TraitAlias(ref generics, bounds) => {
            visitor.visit_id(item.hir_id());
            visitor.visit_generics(generics);
            walk_list!(visitor, visit_param_bound, bounds);
        }
    }
}

pub fn walk_body<'v, V: Visitor<'v>>(visitor: &mut V, body: &'v Body<'v>) {
    walk_list!(visitor, visit_param, body.params);
    visitor.visit_expr(body.value);
}

pub fn walk_ident<'v, V: Visitor<'v>>(visitor: &mut V, ident: Ident) {
    visitor.visit_name(ident.name);
}

pub fn walk_mod<'v, V: Visitor<'v>>(visitor: &mut V, module: &'v Mod<'v>, mod_hir_id: HirId) {
    visitor.visit_id(mod_hir_id);
    for &item_id in module.item_ids {
        visitor.visit_nested_item(item_id);
    }
}

pub fn walk_foreign_item<'v, V: Visitor<'v>>(visitor: &mut V, foreign_item: &'v ForeignItem<'v>) {
    visitor.visit_id(foreign_item.hir_id());
    visitor.visit_ident(foreign_item.ident);

    match foreign_item.kind {
        ForeignItemKind::Fn(ref function_declaration, param_names, ref generics) => {
            visitor.visit_generics(generics);
            visitor.visit_fn_decl(function_declaration);
            for &param_name in param_names {
                visitor.visit_ident(param_name);
            }
        }
        ForeignItemKind::Static(ref typ, _) => visitor.visit_ty(typ),
        ForeignItemKind::Type => (),
    }
}

pub fn walk_local<'v, V: Visitor<'v>>(visitor: &mut V, local: &'v Local<'v>) {
    // Intentionally visiting the expr first - the initialization expr
    // dominates the local's definition.
    walk_list!(visitor, visit_expr, &local.init);
    visitor.visit_id(local.hir_id);
    visitor.visit_pat(local.pat);
    if let Some(els) = local.els {
        visitor.visit_block(els);
    }
    walk_list!(visitor, visit_ty, &local.ty);
}

pub fn walk_block<'v, V: Visitor<'v>>(visitor: &mut V, block: &'v Block<'v>) {
    visitor.visit_id(block.hir_id);
    walk_list!(visitor, visit_stmt, block.stmts);
    walk_list!(visitor, visit_expr, &block.expr);
}

pub fn walk_stmt<'v, V: Visitor<'v>>(visitor: &mut V, statement: &'v Stmt<'v>) {
    visitor.visit_id(statement.hir_id);
    match statement.kind {
        StmtKind::Local(ref local) => visitor.visit_local(local),
        StmtKind::Item(item) => visitor.visit_nested_item(item),
        StmtKind::Expr(ref expression) | StmtKind::Semi(ref expression) => {
            visitor.visit_expr(expression)
        }
    }
}

pub fn walk_arm<'v, V: Visitor<'v>>(visitor: &mut V, arm: &'v Arm<'v>) {
    visitor.visit_id(arm.hir_id);
    visitor.visit_pat(arm.pat);
    if let Some(ref g) = arm.guard {
        match g {
            Guard::If(ref e) => visitor.visit_expr(e),
            Guard::IfLet(ref l) => {
                visitor.visit_let_expr(l);
            }
        }
    }
    visitor.visit_expr(arm.body);
}

pub fn walk_pat<'v, V: Visitor<'v>>(visitor: &mut V, pattern: &'v Pat<'v>) {
    visitor.visit_id(pattern.hir_id);
    match pattern.kind {
        PatKind::TupleStruct(ref qpath, children, _) => {
            visitor.visit_qpath(qpath, pattern.hir_id, pattern.span);
            walk_list!(visitor, visit_pat, children);
        }
        PatKind::Path(ref qpath) => {
            visitor.visit_qpath(qpath, pattern.hir_id, pattern.span);
        }
        PatKind::Struct(ref qpath, fields, _) => {
            visitor.visit_qpath(qpath, pattern.hir_id, pattern.span);
            walk_list!(visitor, visit_pat_field, fields);
        }
        PatKind::Or(pats) => walk_list!(visitor, visit_pat, pats),
        PatKind::Tuple(tuple_elements, _) => {
            walk_list!(visitor, visit_pat, tuple_elements);
        }
        PatKind::Box(ref subpattern) | PatKind::Ref(ref subpattern, _) => {
            visitor.visit_pat(subpattern)
        }
        PatKind::Binding(_, _hir_id, ident, ref optional_subpattern) => {
            visitor.visit_ident(ident);
            walk_list!(visitor, visit_pat, optional_subpattern);
        }
        PatKind::Lit(ref expression) => visitor.visit_expr(expression),
        PatKind::Range(ref lower_bound, ref upper_bound, _) => {
            walk_list!(visitor, visit_expr, lower_bound);
            walk_list!(visitor, visit_expr, upper_bound);
        }
        PatKind::Wild => (),
        PatKind::Slice(prepatterns, ref slice_pattern, postpatterns) => {
            walk_list!(visitor, visit_pat, prepatterns);
            walk_list!(visitor, visit_pat, slice_pattern);
            walk_list!(visitor, visit_pat, postpatterns);
        }
    }
}

pub fn walk_pat_field<'v, V: Visitor<'v>>(visitor: &mut V, field: &'v PatField<'v>) {
    visitor.visit_id(field.hir_id);
    visitor.visit_ident(field.ident);
    visitor.visit_pat(field.pat)
}

pub fn walk_array_len<'v, V: Visitor<'v>>(visitor: &mut V, len: &'v ArrayLen) {
    match len {
        &ArrayLen::Infer(hir_id, _span) => visitor.visit_id(hir_id),
        ArrayLen::Body(c) => visitor.visit_anon_const(c),
    }
}

pub fn walk_anon_const<'v, V: Visitor<'v>>(visitor: &mut V, constant: &'v AnonConst) {
    visitor.visit_id(constant.hir_id);
    visitor.visit_nested_body(constant.body);
}

pub fn walk_inline_const<'v, V: Visitor<'v>>(visitor: &mut V, constant: &'v ConstBlock) {
    visitor.visit_id(constant.hir_id);
    visitor.visit_nested_body(constant.body);
}

pub fn walk_expr<'v, V: Visitor<'v>>(visitor: &mut V, expression: &'v Expr<'v>) {
    visitor.visit_id(expression.hir_id);
    match expression.kind {
        ExprKind::Array(subexpressions) => {
            walk_list!(visitor, visit_expr, subexpressions);
        }
        ExprKind::ConstBlock(ref const_block) => visitor.visit_inline_const(const_block),
        ExprKind::Repeat(ref element, ref count) => {
            visitor.visit_expr(element);
            visitor.visit_array_length(count)
        }
        ExprKind::Struct(ref qpath, fields, ref optional_base) => {
            visitor.visit_qpath(qpath, expression.hir_id, expression.span);
            walk_list!(visitor, visit_expr_field, fields);
            walk_list!(visitor, visit_expr, optional_base);
        }
        ExprKind::Tup(subexpressions) => {
            walk_list!(visitor, visit_expr, subexpressions);
        }
        ExprKind::Call(ref callee_expression, arguments) => {
            visitor.visit_expr(callee_expression);
            walk_list!(visitor, visit_expr, arguments);
        }
        ExprKind::MethodCall(ref segment, receiver, arguments, _) => {
            visitor.visit_path_segment(segment);
            visitor.visit_expr(receiver);
            walk_list!(visitor, visit_expr, arguments);
        }
        ExprKind::Binary(_, ref left_expression, ref right_expression) => {
            visitor.visit_expr(left_expression);
            visitor.visit_expr(right_expression)
        }
        ExprKind::AddrOf(_, _, ref subexpression) | ExprKind::Unary(_, ref subexpression) => {
            visitor.visit_expr(subexpression)
        }
        ExprKind::Cast(ref subexpression, ref typ) | ExprKind::Type(ref subexpression, ref typ) => {
            visitor.visit_expr(subexpression);
            visitor.visit_ty(typ)
        }
        ExprKind::DropTemps(ref subexpression) => {
            visitor.visit_expr(subexpression);
        }
        ExprKind::Let(ref let_expr) => visitor.visit_let_expr(let_expr),
        ExprKind::If(ref cond, ref then, ref else_opt) => {
            visitor.visit_expr(cond);
            visitor.visit_expr(then);
            walk_list!(visitor, visit_expr, else_opt);
        }
        ExprKind::Loop(ref block, ref opt_label, _, _) => {
            walk_list!(visitor, visit_label, opt_label);
            visitor.visit_block(block);
        }
        ExprKind::Match(ref subexpression, arms, _) => {
            visitor.visit_expr(subexpression);
            walk_list!(visitor, visit_arm, arms);
        }
        ExprKind::Closure(&Closure {
            def_id,
            binder: _,
            bound_generic_params,
            fn_decl,
            body,
            capture_clause: _,
            fn_decl_span: _,
            fn_arg_span: _,
            movability: _,
            constness: _,
        }) => {
            walk_list!(visitor, visit_generic_param, bound_generic_params);
            visitor.visit_fn(FnKind::Closure, fn_decl, body, expression.span, def_id)
        }
        ExprKind::Block(ref block, ref opt_label) => {
            walk_list!(visitor, visit_label, opt_label);
            visitor.visit_block(block);
        }
        ExprKind::Assign(ref lhs, ref rhs, _) => {
            visitor.visit_expr(rhs);
            visitor.visit_expr(lhs)
        }
        ExprKind::AssignOp(_, ref left_expression, ref right_expression) => {
            visitor.visit_expr(right_expression);
            visitor.visit_expr(left_expression);
        }
        ExprKind::Field(ref subexpression, ident) => {
            visitor.visit_expr(subexpression);
            visitor.visit_ident(ident);
        }
        ExprKind::Index(ref main_expression, ref index_expression, _) => {
            visitor.visit_expr(main_expression);
            visitor.visit_expr(index_expression)
        }
        ExprKind::Path(ref qpath) => {
            visitor.visit_qpath(qpath, expression.hir_id, expression.span);
        }
        ExprKind::Break(ref destination, ref opt_expr) => {
            walk_list!(visitor, visit_label, &destination.label);
            walk_list!(visitor, visit_expr, opt_expr);
        }
        ExprKind::Continue(ref destination) => {
            walk_list!(visitor, visit_label, &destination.label);
        }
        ExprKind::Ret(ref optional_expression) => {
            walk_list!(visitor, visit_expr, optional_expression);
        }
        ExprKind::Become(ref expr) => visitor.visit_expr(expr),
        ExprKind::InlineAsm(ref asm) => {
            visitor.visit_inline_asm(asm, expression.hir_id);
        }
        ExprKind::OffsetOf(ref container, ref fields) => {
            visitor.visit_ty(container);
            walk_list!(visitor, visit_ident, fields.iter().copied());
        }
        ExprKind::Yield(ref subexpression, _) => {
            visitor.visit_expr(subexpression);
        }
        ExprKind::Lit(_) | ExprKind::Err(_) => {}
    }
}

pub fn walk_let_expr<'v, V: Visitor<'v>>(visitor: &mut V, let_expr: &'v Let<'v>) {
    // match the visit order in walk_local
    visitor.visit_expr(let_expr.init);
    visitor.visit_id(let_expr.hir_id);
    visitor.visit_pat(let_expr.pat);
    walk_list!(visitor, visit_ty, let_expr.ty);
}

pub fn walk_expr_field<'v, V: Visitor<'v>>(visitor: &mut V, field: &'v ExprField<'v>) {
    visitor.visit_id(field.hir_id);
    visitor.visit_ident(field.ident);
    visitor.visit_expr(field.expr)
}

pub fn walk_ty<'v, V: Visitor<'v>>(visitor: &mut V, typ: &'v Ty<'v>) {
    visitor.visit_id(typ.hir_id);

    match typ.kind {
        TyKind::Slice(ref ty) => visitor.visit_ty(ty),
        TyKind::Ptr(ref mutable_type) => visitor.visit_ty(mutable_type.ty),
        TyKind::Ref(ref lifetime, ref mutable_type) => {
            visitor.visit_lifetime(lifetime);
            visitor.visit_ty(mutable_type.ty)
        }
        TyKind::Never => {}
        TyKind::Tup(tuple_element_types) => {
            walk_list!(visitor, visit_ty, tuple_element_types);
        }
        TyKind::BareFn(ref function_declaration) => {
            walk_list!(visitor, visit_generic_param, function_declaration.generic_params);
            visitor.visit_fn_decl(function_declaration.decl);
        }
        TyKind::Path(ref qpath) => {
            visitor.visit_qpath(qpath, typ.hir_id, typ.span);
        }
        TyKind::OpaqueDef(item_id, lifetimes, _in_trait) => {
            visitor.visit_nested_item(item_id);
            walk_list!(visitor, visit_generic_arg, lifetimes);
        }
        TyKind::Array(ref ty, ref length) => {
            visitor.visit_ty(ty);
            visitor.visit_array_length(length)
        }
        TyKind::TraitObject(bounds, ref lifetime, _syntax) => {
            for bound in bounds {
                visitor.visit_poly_trait_ref(bound);
            }
            visitor.visit_lifetime(lifetime);
        }
        TyKind::Typeof(ref expression) => visitor.visit_anon_const(expression),
        TyKind::Infer | TyKind::Err(_) => {}
    }
}

pub fn walk_generic_param<'v, V: Visitor<'v>>(visitor: &mut V, param: &'v GenericParam<'v>) {
    visitor.visit_id(param.hir_id);
    match param.name {
        ParamName::Plain(ident) => visitor.visit_ident(ident),
        ParamName::Error | ParamName::Fresh => {}
    }
    match param.kind {
        GenericParamKind::Lifetime { .. } => {}
        GenericParamKind::Type { ref default, .. } => walk_list!(visitor, visit_ty, default),
        GenericParamKind::Const { ref ty, ref default } => {
            visitor.visit_ty(ty);
            if let Some(ref default) = default {
                visitor.visit_const_param_default(param.hir_id, default);
            }
        }
    }
}

pub fn walk_const_param_default<'v, V: Visitor<'v>>(visitor: &mut V, ct: &'v AnonConst) {
    visitor.visit_anon_const(ct)
}

pub fn walk_generics<'v, V: Visitor<'v>>(visitor: &mut V, generics: &'v Generics<'v>) {
    walk_list!(visitor, visit_generic_param, generics.params);
    walk_list!(visitor, visit_where_predicate, generics.predicates);
}

pub fn walk_where_predicate<'v, V: Visitor<'v>>(
    visitor: &mut V,
    predicate: &'v WherePredicate<'v>,
) {
    match *predicate {
        WherePredicate::BoundPredicate(WhereBoundPredicate {
            hir_id,
            ref bounded_ty,
            bounds,
            bound_generic_params,
            origin: _,
            span: _,
        }) => {
            visitor.visit_id(hir_id);
            visitor.visit_ty(bounded_ty);
            walk_list!(visitor, visit_param_bound, bounds);
            walk_list!(visitor, visit_generic_param, bound_generic_params);
        }
        WherePredicate::RegionPredicate(WhereRegionPredicate {
            ref lifetime,
            bounds,
            span: _,
            in_where_clause: _,
        }) => {
            visitor.visit_lifetime(lifetime);
            walk_list!(visitor, visit_param_bound, bounds);
        }
        WherePredicate::EqPredicate(WhereEqPredicate { ref lhs_ty, ref rhs_ty, span: _ }) => {
            visitor.visit_ty(lhs_ty);
            visitor.visit_ty(rhs_ty);
        }
    }
}

pub fn walk_fn_decl<'v, V: Visitor<'v>>(visitor: &mut V, function_declaration: &'v FnDecl<'v>) {
    for ty in function_declaration.inputs {
        visitor.visit_ty(ty)
    }
    visitor.visit_fn_ret_ty(&function_declaration.output)
}

pub fn walk_fn_ret_ty<'v, V: Visitor<'v>>(visitor: &mut V, ret_ty: &'v FnRetTy<'v>) {
    if let FnRetTy::Return(ref output_ty) = *ret_ty {
        visitor.visit_ty(output_ty)
    }
}

pub fn walk_fn<'v, V: Visitor<'v>>(
    visitor: &mut V,
    function_kind: FnKind<'v>,
    function_declaration: &'v FnDecl<'v>,
    body_id: BodyId,
    _: LocalDefId,
) {
    visitor.visit_fn_decl(function_declaration);
    walk_fn_kind(visitor, function_kind);
    visitor.visit_nested_body(body_id)
}

pub fn walk_fn_kind<'v, V: Visitor<'v>>(visitor: &mut V, function_kind: FnKind<'v>) {
    match function_kind {
        FnKind::ItemFn(_, generics, ..) => {
            visitor.visit_generics(generics);
        }
        FnKind::Closure | FnKind::Method(..) => {}
    }
}

pub fn walk_use<'v, V: Visitor<'v>>(visitor: &mut V, path: &'v UsePath<'v>, hir_id: HirId) {
    visitor.visit_id(hir_id);
    let UsePath { segments, ref res, span } = *path;
    for &res in res {
        visitor.visit_path(&Path { segments, res, span }, hir_id);
    }
}

pub fn walk_trait_item<'v, V: Visitor<'v>>(visitor: &mut V, trait_item: &'v TraitItem<'v>) {
    // N.B., deliberately force a compilation error if/when new fields are added.
    let TraitItem { ident, generics, ref defaultness, ref kind, span, owner_id: _ } = *trait_item;
    let hir_id = trait_item.hir_id();
    visitor.visit_ident(ident);
    visitor.visit_generics(&generics);
    visitor.visit_defaultness(&defaultness);
    visitor.visit_id(hir_id);
    match *kind {
        TraitItemKind::Const(ref ty, default) => {
            visitor.visit_ty(ty);
            walk_list!(visitor, visit_nested_body, default);
        }
        TraitItemKind::Fn(ref sig, TraitFn::Required(param_names)) => {
            visitor.visit_fn_decl(sig.decl);
            for &param_name in param_names {
                visitor.visit_ident(param_name);
            }
        }
        TraitItemKind::Fn(ref sig, TraitFn::Provided(body_id)) => {
            visitor.visit_fn(
                FnKind::Method(ident, sig),
                sig.decl,
                body_id,
                span,
                trait_item.owner_id.def_id,
            );
        }
        TraitItemKind::Type(bounds, ref default) => {
            walk_list!(visitor, visit_param_bound, bounds);
            walk_list!(visitor, visit_ty, default);
        }
    }
}

pub fn walk_trait_item_ref<'v, V: Visitor<'v>>(visitor: &mut V, trait_item_ref: &'v TraitItemRef) {
    // N.B., deliberately force a compilation error if/when new fields are added.
    let TraitItemRef { id, ident, ref kind, span: _ } = *trait_item_ref;
    visitor.visit_nested_trait_item(id);
    visitor.visit_ident(ident);
    visitor.visit_associated_item_kind(kind);
}

pub fn walk_impl_item<'v, V: Visitor<'v>>(visitor: &mut V, impl_item: &'v ImplItem<'v>) {
    // N.B., deliberately force a compilation error if/when new fields are added.
    let ImplItem {
        owner_id: _,
        ident,
        ref generics,
        ref kind,
        ref defaultness,
        span: _,
        vis_span: _,
    } = *impl_item;

    visitor.visit_ident(ident);
    visitor.visit_generics(generics);
    visitor.visit_defaultness(defaultness);
    visitor.visit_id(impl_item.hir_id());
    match *kind {
        ImplItemKind::Const(ref ty, body) => {
            visitor.visit_ty(ty);
            visitor.visit_nested_body(body);
        }
        ImplItemKind::Fn(ref sig, body_id) => {
            visitor.visit_fn(
                FnKind::Method(impl_item.ident, sig),
                sig.decl,
                body_id,
                impl_item.span,
                impl_item.owner_id.def_id,
            );
        }
        ImplItemKind::Type(ref ty) => {
            visitor.visit_ty(ty);
        }
    }
}

pub fn walk_foreign_item_ref<'v, V: Visitor<'v>>(
    visitor: &mut V,
    foreign_item_ref: &'v ForeignItemRef,
) {
    // N.B., deliberately force a compilation error if/when new fields are added.
    let ForeignItemRef { id, ident, span: _ } = *foreign_item_ref;
    visitor.visit_nested_foreign_item(id);
    visitor.visit_ident(ident);
}

pub fn walk_impl_item_ref<'v, V: Visitor<'v>>(visitor: &mut V, impl_item_ref: &'v ImplItemRef) {
    // N.B., deliberately force a compilation error if/when new fields are added.
    let ImplItemRef { id, ident, ref kind, span: _, trait_item_def_id: _ } = *impl_item_ref;
    visitor.visit_nested_impl_item(id);
    visitor.visit_ident(ident);
    visitor.visit_associated_item_kind(kind);
}

pub fn walk_trait_ref<'v, V: Visitor<'v>>(visitor: &mut V, trait_ref: &'v TraitRef<'v>) {
    visitor.visit_id(trait_ref.hir_ref_id);
    visitor.visit_path(trait_ref.path, trait_ref.hir_ref_id)
}

pub fn walk_param_bound<'v, V: Visitor<'v>>(visitor: &mut V, bound: &'v GenericBound<'v>) {
    match *bound {
        GenericBound::Trait(ref typ, _modifier) => {
            visitor.visit_poly_trait_ref(typ);
        }
        GenericBound::LangItemTrait(_, _span, hir_id, args) => {
            visitor.visit_id(hir_id);
            visitor.visit_generic_args(args);
        }
        GenericBound::Outlives(ref lifetime) => visitor.visit_lifetime(lifetime),
    }
}

pub fn walk_poly_trait_ref<'v, V: Visitor<'v>>(visitor: &mut V, trait_ref: &'v PolyTraitRef<'v>) {
    walk_list!(visitor, visit_generic_param, trait_ref.bound_generic_params);
    visitor.visit_trait_ref(&trait_ref.trait_ref);
}

pub fn walk_struct_def<'v, V: Visitor<'v>>(
    visitor: &mut V,
    struct_definition: &'v VariantData<'v>,
) {
    walk_list!(visitor, visit_id, struct_definition.ctor_hir_id());
    walk_list!(visitor, visit_field_def, struct_definition.fields());
}

pub fn walk_field_def<'v, V: Visitor<'v>>(visitor: &mut V, field: &'v FieldDef<'v>) {
    visitor.visit_id(field.hir_id);
    visitor.visit_ident(field.ident);
    visitor.visit_ty(field.ty);
}

pub fn walk_enum_def<'v, V: Visitor<'v>>(
    visitor: &mut V,
    enum_definition: &'v EnumDef<'v>,
    item_id: HirId,
) {
    visitor.visit_id(item_id);
    walk_list!(visitor, visit_variant, enum_definition.variants);
}

pub fn walk_variant<'v, V: Visitor<'v>>(visitor: &mut V, variant: &'v Variant<'v>) {
    visitor.visit_ident(variant.ident);
    visitor.visit_id(variant.hir_id);
    visitor.visit_variant_data(&variant.data);
    walk_list!(visitor, visit_anon_const, &variant.disr_expr);
}

pub fn walk_label<'v, V: Visitor<'v>>(visitor: &mut V, label: &'v Label) {
    visitor.visit_ident(label.ident);
}

pub fn walk_inf<'v, V: Visitor<'v>>(visitor: &mut V, inf: &'v InferArg) {
    visitor.visit_id(inf.hir_id);
}

pub fn walk_generic_arg<'v, V: Visitor<'v>>(visitor: &mut V, generic_arg: &'v GenericArg<'v>) {
    match generic_arg {
        GenericArg::Lifetime(lt) => visitor.visit_lifetime(lt),
        GenericArg::Type(ty) => visitor.visit_ty(ty),
        GenericArg::Const(ct) => visitor.visit_anon_const(&ct.value),
        GenericArg::Infer(inf) => visitor.visit_infer(inf),
    }
}

pub fn walk_lifetime<'v, V: Visitor<'v>>(visitor: &mut V, lifetime: &'v Lifetime) {
    visitor.visit_id(lifetime.hir_id);
    visitor.visit_ident(lifetime.ident);
}

pub fn walk_qpath<'v, V: Visitor<'v>>(visitor: &mut V, qpath: &'v QPath<'v>, id: HirId) {
    match *qpath {
        QPath::Resolved(ref maybe_qself, ref path) => {
            walk_list!(visitor, visit_ty, maybe_qself);
            visitor.visit_path(path, id)
        }
        QPath::TypeRelative(ref qself, ref segment) => {
            visitor.visit_ty(qself);
            visitor.visit_path_segment(segment);
        }
        QPath::LangItem(..) => {}
    }
}

pub fn walk_path<'v, V: Visitor<'v>>(visitor: &mut V, path: &Path<'v>) {
    for segment in path.segments {
        visitor.visit_path_segment(segment);
    }
}

pub fn walk_path_segment<'v, V: Visitor<'v>>(visitor: &mut V, segment: &'v PathSegment<'v>) {
    visitor.visit_ident(segment.ident);
    visitor.visit_id(segment.hir_id);
    if let Some(ref args) = segment.args {
        visitor.visit_generic_args(args);
    }
}

pub fn walk_generic_args<'v, V: Visitor<'v>>(visitor: &mut V, generic_args: &'v GenericArgs<'v>) {
    walk_list!(visitor, visit_generic_arg, generic_args.args);
    walk_list!(visitor, visit_assoc_type_binding, generic_args.bindings);
}

pub fn walk_assoc_type_binding<'v, V: Visitor<'v>>(
    visitor: &mut V,
    type_binding: &'v TypeBinding<'v>,
) {
    visitor.visit_id(type_binding.hir_id);
    visitor.visit_ident(type_binding.ident);
    visitor.visit_generic_args(type_binding.gen_args);
    match type_binding.kind {
        TypeBindingKind::Equality { ref term } => match term {
            Term::Ty(ref ty) => visitor.visit_ty(ty),
            Term::Const(ref c) => visitor.visit_anon_const(c),
        },
        TypeBindingKind::Constraint { bounds } => walk_list!(visitor, visit_param_bound, bounds),
    }
}

pub fn walk_associated_item_kind<'v, V: Visitor<'v>>(_: &mut V, _: &'v AssocItemKind) {
    // No visitable content here: this fn exists so you can call it if
    // the right thing to do, should content be added in the future,
    // would be to walk it.
}

pub fn walk_defaultness<'v, V: Visitor<'v>>(_: &mut V, _: &'v Defaultness) {
    // No visitable content here: this fn exists so you can call it if
    // the right thing to do, should content be added in the future,
    // would be to walk it.
}

pub fn walk_inline_asm<'v, V: Visitor<'v>>(visitor: &mut V, asm: &'v InlineAsm<'v>, id: HirId) {
    for (op, op_sp) in asm.operands {
        match op {
            InlineAsmOperand::In { expr, .. } | InlineAsmOperand::InOut { expr, .. } => {
                visitor.visit_expr(expr)
            }
            InlineAsmOperand::Out { expr, .. } => {
                if let Some(expr) = expr {
                    visitor.visit_expr(expr);
                }
            }
            InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
                visitor.visit_expr(in_expr);
                if let Some(out_expr) = out_expr {
                    visitor.visit_expr(out_expr);
                }
            }
            InlineAsmOperand::Const { anon_const, .. }
            | InlineAsmOperand::SymFn { anon_const, .. } => visitor.visit_anon_const(anon_const),
            InlineAsmOperand::SymStatic { path, .. } => visitor.visit_qpath(path, id, *op_sp),
        }
    }
}