1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/*!

# typeck

The type checker is responsible for:

1. Determining the type of each expression.
2. Resolving methods and traits.
3. Guaranteeing that most type rules are met. ("Most?", you say, "why most?"
   Well, dear reader, read on.)

The main entry point is [`check_crate()`]. Type checking operates in
several major phases:

1. The collect phase first passes over all items and determines their
   type, without examining their "innards".

2. Variance inference then runs to compute the variance of each parameter.

3. Coherence checks for overlapping or orphaned impls.

4. Finally, the check phase then checks function bodies and so forth.
   Within the check phase, we check each function body one at a time
   (bodies of function expressions are checked as part of the
   containing function). Inference is used to supply types wherever
   they are unknown. The actual checking of a function itself has
   several phases (check, regionck, writeback), as discussed in the
   documentation for the [`check`] module.

The type checker is defined into various submodules which are documented
independently:

- astconv: converts the AST representation of types
  into the `ty` representation.

- collect: computes the types of each top-level item and enters them into
  the `tcx.types` table for later use.

- coherence: enforces coherence rules, builds some tables.

- variance: variance inference

- outlives: outlives inference

- check: walks over function bodies and type checks them, inferring types for
  local variables, type parameters, etc as necessary.

- infer: finds the types to use for each type variable such that
  all subtyping and assignment constraints are met. In essence, the check
  module specifies the constraints, and the infer module solves them.

## Note

This API is completely unstable and subject to change.

*/

#![allow(rustc::potential_query_instability)]
#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
#![feature(box_patterns)]
#![feature(control_flow_enum)]
#![feature(if_let_guard)]
#![feature(is_sorted)]
#![feature(iter_intersperse)]
#![feature(let_chains)]
#![feature(min_specialization)]
#![feature(never_type)]
#![feature(lazy_cell)]
#![feature(slice_partition_dedup)]
#![feature(try_blocks)]
#![feature(type_alias_impl_trait)]
#![recursion_limit = "256"]

#[macro_use]
extern crate tracing;

#[macro_use]
extern crate rustc_middle;

// These are used by Clippy.
pub mod check;

pub mod astconv;
pub mod autoderef;
mod bounds;
mod check_unused;
mod coherence;
// FIXME: This module shouldn't be public.
pub mod collect;
mod constrained_generic_params;
mod errors;
pub mod hir_wf_check;
mod impl_wf_check;
mod outlives;
pub mod structured_errors;
mod variance;

use rustc_errors::ErrorGuaranteed;
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
use rustc_fluent_macro::fluent_messages;
use rustc_hir as hir;
use rustc_middle::middle;
use rustc_middle::query::Providers;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_middle::util;
use rustc_session::parse::feature_err;
use rustc_span::{symbol::sym, Span, DUMMY_SP};
use rustc_target::spec::abi::Abi;
use rustc_trait_selection::traits;

use astconv::{AstConv, OnlySelfBounds};
use bounds::Bounds;
use rustc_hir::def::DefKind;

fluent_messages! { "../messages.ftl" }

fn require_c_abi_if_c_variadic(tcx: TyCtxt<'_>, decl: &hir::FnDecl<'_>, abi: Abi, span: Span) {
    const CONVENTIONS_UNSTABLE: &str = "`C`, `cdecl`, `aapcs`, `win64`, `sysv64` or `efiapi`";
    const CONVENTIONS_STABLE: &str = "`C` or `cdecl`";
    const UNSTABLE_EXPLAIN: &str =
        "using calling conventions other than `C` or `cdecl` for varargs functions is unstable";

    if !decl.c_variadic || matches!(abi, Abi::C { .. } | Abi::Cdecl { .. }) {
        return;
    }

    let extended_abi_support = tcx.features().extended_varargs_abi_support;
    let conventions = match (extended_abi_support, abi.supports_varargs()) {
        // User enabled additional ABI support for varargs and function ABI matches those ones.
        (true, true) => return,

        // Using this ABI would be ok, if the feature for additional ABI support was enabled.
        // Return CONVENTIONS_STABLE, because we want the other error to look the same.
        (false, true) => {
            feature_err(
                &tcx.sess.parse_sess,
                sym::extended_varargs_abi_support,
                span,
                UNSTABLE_EXPLAIN,
            )
            .emit();
            CONVENTIONS_STABLE
        }

        (false, false) => CONVENTIONS_STABLE,
        (true, false) => CONVENTIONS_UNSTABLE,
    };

    tcx.sess.emit_err(errors::VariadicFunctionCompatibleConvention { span, conventions });
}

pub fn provide(providers: &mut Providers) {
    collect::provide(providers);
    coherence::provide(providers);
    check::provide(providers);
    check_unused::provide(providers);
    variance::provide(providers);
    outlives::provide(providers);
    impl_wf_check::provide(providers);
    hir_wf_check::provide(providers);
}

pub fn check_crate(tcx: TyCtxt<'_>) -> Result<(), ErrorGuaranteed> {
    let _prof_timer = tcx.sess.timer("type_check_crate");

    // this ensures that later parts of type checking can assume that items
    // have valid types and not error
    // FIXME(matthewjasper) We shouldn't need to use `track_errors`.
    tcx.sess.track_errors(|| {
        tcx.sess.time("type_collecting", || {
            tcx.hir().for_each_module(|module| tcx.ensure().collect_mod_item_types(module))
        });
    })?;

    if tcx.features().rustc_attrs {
        tcx.sess.track_errors(|| {
            tcx.sess.time("outlives_testing", || outlives::test::test_inferred_outlives(tcx));
        })?;
    }

    tcx.sess.track_errors(|| {
        tcx.sess.time("impl_wf_inference", || {
            tcx.hir().for_each_module(|module| tcx.ensure().check_mod_impl_wf(module))
        });
    })?;

    tcx.sess.track_errors(|| {
        tcx.sess.time("coherence_checking", || {
            for &trait_def_id in tcx.all_local_trait_impls(()).keys() {
                tcx.ensure().coherent_trait(trait_def_id);
            }

            // these queries are executed for side-effects (error reporting):
            tcx.ensure().crate_inherent_impls(());
            tcx.ensure().crate_inherent_impls_overlap_check(());
        });
    })?;

    if tcx.features().rustc_attrs {
        tcx.sess.track_errors(|| {
            tcx.sess.time("variance_testing", || variance::test::test_variance(tcx));
        })?;
    }

    tcx.sess.track_errors(|| {
        tcx.sess.time("wf_checking", || {
            tcx.hir().par_for_each_module(|module| tcx.ensure().check_mod_type_wf(module))
        });
    })?;

    // NOTE: This is copy/pasted in librustdoc/core.rs and should be kept in sync.
    tcx.sess.time("item_types_checking", || {
        tcx.hir().for_each_module(|module| tcx.ensure().check_mod_item_types(module))
    });

    // Freeze definitions as we don't add new ones at this point. This improves performance by
    // allowing lock-free access to them.
    tcx.untracked().definitions.freeze();

    // FIXME: Remove this when we implement creating `DefId`s
    // for anon constants during their parents' typeck.
    // Typeck all body owners in parallel will produce queries
    // cycle errors because it may typeck on anon constants directly.
    tcx.hir().par_body_owners(|item_def_id| {
        let def_kind = tcx.def_kind(item_def_id);
        if !matches!(def_kind, DefKind::AnonConst) {
            tcx.ensure().typeck(item_def_id);
        }
    });

    tcx.ensure().check_unused_traits(());

    if let Some(reported) = tcx.sess.has_errors() { Err(reported) } else { Ok(()) }
}

/// A quasi-deprecated helper used in rustdoc and clippy to get
/// the type from a HIR node.
pub fn hir_ty_to_ty<'tcx>(tcx: TyCtxt<'tcx>, hir_ty: &hir::Ty<'_>) -> Ty<'tcx> {
    // In case there are any projections, etc., find the "environment"
    // def-ID that will be used to determine the traits/predicates in
    // scope. This is derived from the enclosing item-like thing.
    let env_def_id = tcx.hir().get_parent_item(hir_ty.hir_id);
    let item_cx = self::collect::ItemCtxt::new(tcx, env_def_id.def_id);
    item_cx.astconv().ast_ty_to_ty(hir_ty)
}

pub fn hir_trait_to_predicates<'tcx>(
    tcx: TyCtxt<'tcx>,
    hir_trait: &hir::TraitRef<'_>,
    self_ty: Ty<'tcx>,
) -> Bounds<'tcx> {
    // In case there are any projections, etc., find the "environment"
    // def-ID that will be used to determine the traits/predicates in
    // scope. This is derived from the enclosing item-like thing.
    let env_def_id = tcx.hir().get_parent_item(hir_trait.hir_ref_id);
    let item_cx = self::collect::ItemCtxt::new(tcx, env_def_id.def_id);
    let mut bounds = Bounds::default();
    let _ = &item_cx.astconv().instantiate_poly_trait_ref(
        hir_trait,
        DUMMY_SP,
        ty::BoundConstness::NotConst,
        ty::ImplPolarity::Positive,
        self_ty,
        &mut bounds,
        true,
        OnlySelfBounds(false),
    );

    bounds
}