1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_infer::infer::{DefineOpaqueTypes, InferCtxt};
use rustc_infer::traits::{
    Obligation, PolyTraitObligation, PredicateObligation, Selection, SelectionResult, TraitEngine,
};
use rustc_middle::traits::solve::{CandidateSource, CanonicalInput, Certainty, Goal};
use rustc_middle::traits::{
    BuiltinImplSource, ImplSource, ImplSourceUserDefinedData, ObligationCause, SelectionError,
};
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_span::DUMMY_SP;

use crate::solve::assembly::Candidate;
use crate::solve::eval_ctxt::{EvalCtxt, GenerateProofTree};
use crate::solve::inspect::ProofTreeBuilder;
use crate::traits::StructurallyNormalizeExt;
use crate::traits::TraitEngineExt;

pub trait InferCtxtSelectExt<'tcx> {
    fn select_in_new_trait_solver(
        &self,
        obligation: &PolyTraitObligation<'tcx>,
    ) -> SelectionResult<'tcx, Selection<'tcx>>;
}

impl<'tcx> InferCtxtSelectExt<'tcx> for InferCtxt<'tcx> {
    fn select_in_new_trait_solver(
        &self,
        obligation: &PolyTraitObligation<'tcx>,
    ) -> SelectionResult<'tcx, Selection<'tcx>> {
        assert!(self.next_trait_solver());

        let trait_goal = Goal::new(
            self.tcx,
            obligation.param_env,
            self.instantiate_binder_with_placeholders(obligation.predicate),
        );

        let (result, _) = EvalCtxt::enter_root(self, GenerateProofTree::Never, |ecx| {
            let goal = Goal::new(ecx.tcx(), trait_goal.param_env, trait_goal.predicate);
            let (orig_values, canonical_goal) = ecx.canonicalize_goal(goal);
            let mut candidates = ecx.compute_canonical_trait_candidates(canonical_goal);

            // pseudo-winnow
            if candidates.len() == 0 {
                return Err(SelectionError::Unimplemented);
            } else if candidates.len() > 1 {
                let mut i = 0;
                while i < candidates.len() {
                    let should_drop_i = (0..candidates.len()).filter(|&j| i != j).any(|j| {
                        candidate_should_be_dropped_in_favor_of(
                            ecx.tcx(),
                            &candidates[i],
                            &candidates[j],
                        )
                    });
                    if should_drop_i {
                        candidates.swap_remove(i);
                    } else {
                        i += 1;
                        if i > 1 {
                            return Ok(None);
                        }
                    }
                }
            }

            let candidate = candidates.pop().unwrap();
            let (certainty, nested_goals) = ecx
                .instantiate_and_apply_query_response(
                    trait_goal.param_env,
                    orig_values,
                    candidate.result,
                )
                .map_err(|_| SelectionError::Unimplemented)?;

            Ok(Some((candidate, certainty, nested_goals)))
        });

        let (candidate, certainty, nested_goals) = match result {
            Ok(Some((candidate, certainty, nested_goals))) => (candidate, certainty, nested_goals),
            Ok(None) => return Ok(None),
            Err(e) => return Err(e),
        };

        let nested_obligations: Vec<_> = nested_goals
            .into_iter()
            .map(|goal| {
                Obligation::new(self.tcx, ObligationCause::dummy(), goal.param_env, goal.predicate)
            })
            .collect();

        let goal = self.resolve_vars_if_possible(trait_goal);
        match (certainty, candidate.source) {
            // Rematching the implementation will instantiate the same nested goals that
            // would have caused the ambiguity, so we can still make progress here regardless.
            (_, CandidateSource::Impl(def_id)) => {
                rematch_impl(self, goal, def_id, nested_obligations)
            }

            // If an unsize goal is ambiguous, then we can manually rematch it to make
            // selection progress for coercion during HIR typeck. If it is *not* ambiguous,
            // but is `BuiltinImplSource::Misc`, it may have nested `Unsize` goals,
            // and we need to rematch those to detect tuple unsizing and trait upcasting.
            // FIXME: This will be wrong if we have param-env or where-clause bounds
            // with the unsize goal -- we may need to mark those with different impl
            // sources.
            (Certainty::Maybe(_), CandidateSource::BuiltinImpl(src))
            | (Certainty::Yes, CandidateSource::BuiltinImpl(src @ BuiltinImplSource::Misc))
                if self.tcx.lang_items().unsize_trait() == Some(goal.predicate.def_id()) =>
            {
                rematch_unsize(self, goal, nested_obligations, src, certainty)
            }

            // Technically some builtin impls have nested obligations, but if
            // `Certainty::Yes`, then they should've all been verified and don't
            // need re-checking.
            (Certainty::Yes, CandidateSource::BuiltinImpl(src)) => {
                Ok(Some(ImplSource::Builtin(src, nested_obligations)))
            }

            // It's fine not to do anything to rematch these, since there are no
            // nested obligations.
            (Certainty::Yes, CandidateSource::ParamEnv(_) | CandidateSource::AliasBound) => {
                Ok(Some(ImplSource::Param(nested_obligations)))
            }

            (Certainty::Maybe(_), _) => Ok(None),
        }
    }
}

impl<'tcx> EvalCtxt<'_, 'tcx> {
    fn compute_canonical_trait_candidates(
        &mut self,
        canonical_input: CanonicalInput<'tcx>,
    ) -> Vec<Candidate<'tcx>> {
        // This doesn't record the canonical goal on the stack during the
        // candidate assembly step, but that's fine. Selection is conceptually
        // outside of the solver, and if there were any cycles, we'd encounter
        // the cycle anyways one step later.
        EvalCtxt::enter_canonical(
            self.tcx(),
            self.search_graph,
            canonical_input,
            // FIXME: This is wrong, idk if we even want to track stuff here.
            &mut ProofTreeBuilder::new_noop(),
            |ecx, goal| {
                let trait_goal = Goal {
                    param_env: goal.param_env,
                    predicate: goal
                        .predicate
                        .to_opt_poly_trait_pred()
                        .expect("we canonicalized a trait goal")
                        .no_bound_vars()
                        .expect("we instantiated all bound vars"),
                };
                ecx.assemble_and_evaluate_candidates(trait_goal)
            },
        )
    }
}

fn candidate_should_be_dropped_in_favor_of<'tcx>(
    tcx: TyCtxt<'tcx>,
    victim: &Candidate<'tcx>,
    other: &Candidate<'tcx>,
) -> bool {
    match (victim.source, other.source) {
        (CandidateSource::ParamEnv(victim_idx), CandidateSource::ParamEnv(other_idx)) => {
            victim_idx >= other_idx
        }
        (_, CandidateSource::ParamEnv(_)) => true,

        // FIXME: we could prefer earlier vtable bases perhaps...
        (
            CandidateSource::BuiltinImpl(BuiltinImplSource::Object { .. }),
            CandidateSource::BuiltinImpl(BuiltinImplSource::Object { .. }),
        ) => false,
        (_, CandidateSource::BuiltinImpl(BuiltinImplSource::Object { .. })) => true,

        (CandidateSource::Impl(victim_def_id), CandidateSource::Impl(other_def_id)) => {
            tcx.specializes((other_def_id, victim_def_id))
                && other.result.value.certainty == Certainty::Yes
        }

        _ => false,
    }
}

fn rematch_impl<'tcx>(
    infcx: &InferCtxt<'tcx>,
    goal: Goal<'tcx, ty::TraitPredicate<'tcx>>,
    impl_def_id: DefId,
    mut nested: Vec<PredicateObligation<'tcx>>,
) -> SelectionResult<'tcx, Selection<'tcx>> {
    let args = infcx.fresh_args_for_item(DUMMY_SP, impl_def_id);
    let impl_trait_ref =
        infcx.tcx.impl_trait_ref(impl_def_id).unwrap().instantiate(infcx.tcx, args);

    nested.extend(
        infcx
            .at(&ObligationCause::dummy(), goal.param_env)
            .eq(DefineOpaqueTypes::No, goal.predicate.trait_ref, impl_trait_ref)
            .map_err(|_| SelectionError::Unimplemented)?
            .into_obligations(),
    );

    nested.extend(
        infcx.tcx.predicates_of(impl_def_id).instantiate(infcx.tcx, args).into_iter().map(
            |(pred, _)| Obligation::new(infcx.tcx, ObligationCause::dummy(), goal.param_env, pred),
        ),
    );

    Ok(Some(ImplSource::UserDefined(ImplSourceUserDefinedData { impl_def_id, args, nested })))
}

/// The `Unsize` trait is particularly important to coercion, so we try rematch it.
/// NOTE: This must stay in sync with `consider_builtin_unsize_candidate` in trait
/// goal assembly in the solver, both for soundness and in order to avoid ICEs.
fn rematch_unsize<'tcx>(
    infcx: &InferCtxt<'tcx>,
    goal: Goal<'tcx, ty::TraitPredicate<'tcx>>,
    mut nested: Vec<PredicateObligation<'tcx>>,
    source: BuiltinImplSource,
    certainty: Certainty,
) -> SelectionResult<'tcx, Selection<'tcx>> {
    let tcx = infcx.tcx;
    let a_ty = structurally_normalize(goal.predicate.self_ty(), infcx, goal.param_env, &mut nested);
    let b_ty = structurally_normalize(
        goal.predicate.trait_ref.args.type_at(1),
        infcx,
        goal.param_env,
        &mut nested,
    );

    match (a_ty.kind(), b_ty.kind()) {
        // Don't try to coerce `?0` to `dyn Trait`
        (ty::Infer(ty::TyVar(_)), _) | (_, ty::Infer(ty::TyVar(_))) => Ok(None),
        // Stall any ambiguous upcasting goals, since we can't rematch those
        (ty::Dynamic(_, _, ty::Dyn), ty::Dynamic(_, _, ty::Dyn)) => match certainty {
            Certainty::Yes => Ok(Some(ImplSource::Builtin(source, nested))),
            _ => Ok(None),
        },
        // `T` -> `dyn Trait` upcasting
        (_, &ty::Dynamic(data, region, ty::Dyn)) => {
            // Check that the type implements all of the predicates of the def-id.
            // (i.e. the principal, all of the associated types match, and any auto traits)
            nested.extend(data.iter().map(|pred| {
                Obligation::new(
                    infcx.tcx,
                    ObligationCause::dummy(),
                    goal.param_env,
                    pred.with_self_ty(tcx, a_ty),
                )
            }));
            // The type must be Sized to be unsized.
            let sized_def_id = tcx.require_lang_item(hir::LangItem::Sized, None);
            nested.push(Obligation::new(
                infcx.tcx,
                ObligationCause::dummy(),
                goal.param_env,
                ty::TraitRef::new(tcx, sized_def_id, [a_ty]),
            ));
            // The type must outlive the lifetime of the `dyn` we're unsizing into.
            nested.push(Obligation::new(
                infcx.tcx,
                ObligationCause::dummy(),
                goal.param_env,
                ty::OutlivesPredicate(a_ty, region),
            ));

            Ok(Some(ImplSource::Builtin(source, nested)))
        }
        // `[T; n]` -> `[T]` unsizing
        (&ty::Array(a_elem_ty, ..), &ty::Slice(b_elem_ty)) => {
            nested.extend(
                infcx
                    .at(&ObligationCause::dummy(), goal.param_env)
                    .eq(DefineOpaqueTypes::No, a_elem_ty, b_elem_ty)
                    .expect("expected rematch to succeed")
                    .into_obligations(),
            );

            Ok(Some(ImplSource::Builtin(source, nested)))
        }
        // Struct unsizing `Struct<T>` -> `Struct<U>` where `T: Unsize<U>`
        (&ty::Adt(a_def, a_args), &ty::Adt(b_def, b_args))
            if a_def.is_struct() && a_def.did() == b_def.did() =>
        {
            let unsizing_params = tcx.unsizing_params_for_adt(a_def.did());
            // We must be unsizing some type parameters. This also implies
            // that the struct has a tail field.
            if unsizing_params.is_empty() {
                bug!("expected rematch to succeed")
            }

            let tail_field = a_def
                .non_enum_variant()
                .fields
                .raw
                .last()
                .expect("expected unsized ADT to have a tail field");
            let tail_field_ty = tcx.type_of(tail_field.did);

            let a_tail_ty = tail_field_ty.instantiate(tcx, a_args);
            let b_tail_ty = tail_field_ty.instantiate(tcx, b_args);

            // Substitute just the unsizing params from B into A. The type after
            // this substitution must be equal to B. This is so we don't unsize
            // unrelated type parameters.
            let new_a_args = tcx.mk_args_from_iter(
                a_args
                    .iter()
                    .enumerate()
                    .map(|(i, a)| if unsizing_params.contains(i as u32) { b_args[i] } else { a }),
            );
            let unsized_a_ty = Ty::new_adt(tcx, a_def, new_a_args);

            nested.extend(
                infcx
                    .at(&ObligationCause::dummy(), goal.param_env)
                    .eq(DefineOpaqueTypes::No, unsized_a_ty, b_ty)
                    .expect("expected rematch to succeed")
                    .into_obligations(),
            );

            // Finally, we require that `TailA: Unsize<TailB>` for the tail field
            // types.
            nested.push(Obligation::new(
                tcx,
                ObligationCause::dummy(),
                goal.param_env,
                ty::TraitRef::new(tcx, goal.predicate.def_id(), [a_tail_ty, b_tail_ty]),
            ));

            Ok(Some(ImplSource::Builtin(source, nested)))
        }
        // Tuple unsizing `(.., T)` -> `(.., U)` where `T: Unsize<U>`
        (&ty::Tuple(a_tys), &ty::Tuple(b_tys))
            if a_tys.len() == b_tys.len() && !a_tys.is_empty() =>
        {
            let (a_last_ty, a_rest_tys) = a_tys.split_last().unwrap();
            let b_last_ty = b_tys.last().unwrap();

            // Substitute just the tail field of B., and require that they're equal.
            let unsized_a_ty =
                Ty::new_tup_from_iter(tcx, a_rest_tys.iter().chain([b_last_ty]).copied());
            nested.extend(
                infcx
                    .at(&ObligationCause::dummy(), goal.param_env)
                    .eq(DefineOpaqueTypes::No, unsized_a_ty, b_ty)
                    .expect("expected rematch to succeed")
                    .into_obligations(),
            );

            // Similar to ADTs, require that we can unsize the tail.
            nested.push(Obligation::new(
                tcx,
                ObligationCause::dummy(),
                goal.param_env,
                ty::TraitRef::new(tcx, goal.predicate.def_id(), [*a_last_ty, *b_last_ty]),
            ));

            // We need to be able to detect tuple unsizing to require its feature gate.
            assert_eq!(
                source,
                BuiltinImplSource::TupleUnsizing,
                "compiler-errors wants to know if this can ever be triggered..."
            );
            Ok(Some(ImplSource::Builtin(source, nested)))
        }
        _ => {
            assert_ne!(certainty, Certainty::Yes);
            Ok(None)
        }
    }
}

fn structurally_normalize<'tcx>(
    ty: Ty<'tcx>,
    infcx: &InferCtxt<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    nested: &mut Vec<PredicateObligation<'tcx>>,
) -> Ty<'tcx> {
    if matches!(ty.kind(), ty::Alias(..)) {
        let mut engine = <dyn TraitEngine<'tcx>>::new(infcx);
        let normalized_ty = infcx
            .at(&ObligationCause::dummy(), param_env)
            .structurally_normalize(ty, &mut *engine)
            .expect("normalization shouldn't fail if we got to here");
        nested.extend(engine.pending_obligations());
        normalized_ty
    } else {
        ty
    }
}