1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
//! Note: tests specific to this file can be found in:
//!
//!   - `ui/pattern/usefulness`
//!   - `ui/or-patterns`
//!   - `ui/consts/const_in_pattern`
//!   - `ui/rfc-2008-non-exhaustive`
//!   - `ui/half-open-range-patterns`
//!   - probably many others
//!
//! I (Nadrieril) prefer to put new tests in `ui/pattern/usefulness` unless there's a specific
//! reason not to, for example if they depend on a particular feature like `or_patterns`.
//!
//! -----
//!
//! This file includes the logic for exhaustiveness and reachability checking for pattern-matching.
//! Specifically, given a list of patterns for a type, we can tell whether:
//! (a) each pattern is reachable (reachability)
//! (b) the patterns cover every possible value for the type (exhaustiveness)
//!
//! The algorithm implemented here is a modified version of the one described in [this
//! paper](http://moscova.inria.fr/~maranget/papers/warn/index.html). We have however generalized
//! it to accommodate the variety of patterns that Rust supports. We thus explain our version here,
//! without being as rigorous.
//!
//!
//! # Summary
//!
//! The core of the algorithm is the notion of "usefulness". A pattern `q` is said to be *useful*
//! relative to another pattern `p` of the same type if there is a value that is matched by `q` and
//! not matched by `p`. This generalizes to many `p`s: `q` is useful w.r.t. a list of patterns
//! `p_1 .. p_n` if there is a value that is matched by `q` and by none of the `p_i`. We write
//! `usefulness(p_1 .. p_n, q)` for a function that returns a list of such values. The aim of this
//! file is to compute it efficiently.
//!
//! This is enough to compute reachability: a pattern in a `match` expression is reachable iff it
//! is useful w.r.t. the patterns above it:
//! ```rust
//! # fn foo(x: Option<i32>) {
//! match x {
//!     Some(_) => {},
//!     None => {},    // reachable: `None` is matched by this but not the branch above
//!     Some(0) => {}, // unreachable: all the values this matches are already matched by
//!                    // `Some(_)` above
//! }
//! # }
//! ```
//!
//! This is also enough to compute exhaustiveness: a match is exhaustive iff the wildcard `_`
//! pattern is _not_ useful w.r.t. the patterns in the match. The values returned by `usefulness`
//! are used to tell the user which values are missing.
//! ```compile_fail,E0004
//! # fn foo(x: Option<i32>) {
//! match x {
//!     Some(0) => {},
//!     None => {},
//!     // not exhaustive: `_` is useful because it matches `Some(1)`
//! }
//! # }
//! ```
//!
//! The entrypoint of this file is the [`compute_match_usefulness`] function, which computes
//! reachability for each match branch and exhaustiveness for the whole match.
//!
//!
//! # Constructors and fields
//!
//! Note: we will often abbreviate "constructor" as "ctor".
//!
//! The idea that powers everything that is done in this file is the following: a (matchable)
//! value is made from a constructor applied to a number of subvalues. Examples of constructors are
//! `Some`, `None`, `(,)` (the 2-tuple constructor), `Foo {..}` (the constructor for a struct
//! `Foo`), and `2` (the constructor for the number `2`). This is natural when we think of
//! pattern-matching, and this is the basis for what follows.
//!
//! Some of the ctors listed above might feel weird: `None` and `2` don't take any arguments.
//! That's ok: those are ctors that take a list of 0 arguments; they are the simplest case of
//! ctors. We treat `2` as a ctor because `u64` and other number types behave exactly like a huge
//! `enum`, with one variant for each number. This allows us to see any matchable value as made up
//! from a tree of ctors, each having a set number of children. For example: `Foo { bar: None,
//! baz: Ok(0) }` is made from 4 different ctors, namely `Foo{..}`, `None`, `Ok` and `0`.
//!
//! This idea can be extended to patterns: they are also made from constructors applied to fields.
//! A pattern for a given type is allowed to use all the ctors for values of that type (which we
//! call "value constructors"), but there are also pattern-only ctors. The most important one is
//! the wildcard (`_`), and the others are integer ranges (`0..=10`), variable-length slices (`[x,
//! ..]`), and or-patterns (`Ok(0) | Err(_)`). Examples of valid patterns are `42`, `Some(_)`, `Foo
//! { bar: Some(0) | None, baz: _ }`. Note that a binder in a pattern (e.g. `Some(x)`) matches the
//! same values as a wildcard (e.g. `Some(_)`), so we treat both as wildcards.
//!
//! From this deconstruction we can compute whether a given value matches a given pattern; we
//! simply look at ctors one at a time. Given a pattern `p` and a value `v`, we want to compute
//! `matches!(v, p)`. It's mostly straightforward: we compare the head ctors and when they match
//! we compare their fields recursively. A few representative examples:
//!
//! - `matches!(v, _) := true`
//! - `matches!((v0,  v1), (p0,  p1)) := matches!(v0, p0) && matches!(v1, p1)`
//! - `matches!(Foo { bar: v0, baz: v1 }, Foo { bar: p0, baz: p1 }) := matches!(v0, p0) && matches!(v1, p1)`
//! - `matches!(Ok(v0), Ok(p0)) := matches!(v0, p0)`
//! - `matches!(Ok(v0), Err(p0)) := false` (incompatible variants)
//! - `matches!(v, 1..=100) := matches!(v, 1) || ... || matches!(v, 100)`
//! - `matches!([v0], [p0, .., p1]) := false` (incompatible lengths)
//! - `matches!([v0, v1, v2], [p0, .., p1]) := matches!(v0, p0) && matches!(v2, p1)`
//! - `matches!(v, p0 | p1) := matches!(v, p0) || matches!(v, p1)`
//!
//! Constructors, fields and relevant operations are defined in the [`super::deconstruct_pat`] module.
//!
//! Note: this constructors/fields distinction may not straightforwardly apply to every Rust type.
//! For example a value of type `Rc<u64>` can't be deconstructed that way, and `&str` has an
//! infinitude of constructors. There are also subtleties with visibility of fields and
//! uninhabitedness and various other things. The constructors idea can be extended to handle most
//! of these subtleties though; caveats are documented where relevant throughout the code.
//!
//! Whether constructors cover each other is computed by [`Constructor::is_covered_by`].
//!
//!
//! # Specialization
//!
//! Recall that we wish to compute `usefulness(p_1 .. p_n, q)`: given a list of patterns `p_1 ..
//! p_n` and a pattern `q`, all of the same type, we want to find a list of values (called
//! "witnesses") that are matched by `q` and by none of the `p_i`. We obviously don't just
//! enumerate all possible values. From the discussion above we see that we can proceed
//! ctor-by-ctor: for each value ctor of the given type, we ask "is there a value that starts with
//! this constructor and matches `q` and none of the `p_i`?". As we saw above, there's a lot we can
//! say from knowing only the first constructor of our candidate value.
//!
//! Let's take the following example:
//! ```compile_fail,E0004
//! # enum Enum { Variant1(()), Variant2(Option<bool>, u32)}
//! # fn foo(x: Enum) {
//! match x {
//!     Enum::Variant1(_) => {} // `p1`
//!     Enum::Variant2(None, 0) => {} // `p2`
//!     Enum::Variant2(Some(_), 0) => {} // `q`
//! }
//! # }
//! ```
//!
//! We can easily see that if our candidate value `v` starts with `Variant1` it will not match `q`.
//! If `v = Variant2(v0, v1)` however, whether or not it matches `p2` and `q` will depend on `v0`
//! and `v1`. In fact, such a `v` will be a witness of usefulness of `q` exactly when the tuple
//! `(v0, v1)` is a witness of usefulness of `q'` in the following reduced match:
//!
//! ```compile_fail,E0004
//! # fn foo(x: (Option<bool>, u32)) {
//! match x {
//!     (None, 0) => {} // `p2'`
//!     (Some(_), 0) => {} // `q'`
//! }
//! # }
//! ```
//!
//! This motivates a new step in computing usefulness, that we call _specialization_.
//! Specialization consist of filtering a list of patterns for those that match a constructor, and
//! then looking into the constructor's fields. This enables usefulness to be computed recursively.
//!
//! Instead of acting on a single pattern in each row, we will consider a list of patterns for each
//! row, and we call such a list a _pattern-stack_. The idea is that we will specialize the
//! leftmost pattern, which amounts to popping the constructor and pushing its fields, which feels
//! like a stack. We note a pattern-stack simply with `[p_1 ... p_n]`.
//! Here's a sequence of specializations of a list of pattern-stacks, to illustrate what's
//! happening:
//! ```ignore (illustrative)
//! [Enum::Variant1(_)]
//! [Enum::Variant2(None, 0)]
//! [Enum::Variant2(Some(_), 0)]
//! //==>> specialize with `Variant2`
//! [None, 0]
//! [Some(_), 0]
//! //==>> specialize with `Some`
//! [_, 0]
//! //==>> specialize with `true` (say the type was `bool`)
//! [0]
//! //==>> specialize with `0`
//! []
//! ```
//!
//! The function `specialize(c, p)` takes a value constructor `c` and a pattern `p`, and returns 0
//! or more pattern-stacks. If `c` does not match the head constructor of `p`, it returns nothing;
//! otherwise if returns the fields of the constructor. This only returns more than one
//! pattern-stack if `p` has a pattern-only constructor.
//!
//! - Specializing for the wrong constructor returns nothing
//!
//!   `specialize(None, Some(p0)) := []`
//!
//! - Specializing for the correct constructor returns a single row with the fields
//!
//!   `specialize(Variant1, Variant1(p0, p1, p2)) := [[p0, p1, p2]]`
//!
//!   `specialize(Foo{..}, Foo { bar: p0, baz: p1 }) := [[p0, p1]]`
//!
//! - For or-patterns, we specialize each branch and concatenate the results
//!
//!   `specialize(c, p0 | p1) := specialize(c, p0) ++ specialize(c, p1)`
//!
//! - We treat the other pattern constructors as if they were a large or-pattern of all the
//!   possibilities:
//!
//!   `specialize(c, _) := specialize(c, Variant1(_) | Variant2(_, _) | ...)`
//!
//!   `specialize(c, 1..=100) := specialize(c, 1 | ... | 100)`
//!
//!   `specialize(c, [p0, .., p1]) := specialize(c, [p0, p1] | [p0, _, p1] | [p0, _, _, p1] | ...)`
//!
//! - If `c` is a pattern-only constructor, `specialize` is defined on a case-by-case basis. See
//!   the discussion about constructor splitting in [`super::deconstruct_pat`].
//!
//!
//! We then extend this function to work with pattern-stacks as input, by acting on the first
//! column and keeping the other columns untouched.
//!
//! Specialization for the whole matrix is done in [`Matrix::specialize_constructor`]. Note that
//! or-patterns in the first column are expanded before being stored in the matrix. Specialization
//! for a single patstack is done from a combination of [`Constructor::is_covered_by`] and
//! [`PatStack::pop_head_constructor`]. The internals of how it's done mostly live in the
//! [`Fields`] struct.
//!
//!
//! # Computing usefulness
//!
//! We now have all we need to compute usefulness. The inputs to usefulness are a list of
//! pattern-stacks `p_1 ... p_n` (one per row), and a new pattern_stack `q`. The paper and this
//! file calls the list of patstacks a _matrix_. They must all have the same number of columns and
//! the patterns in a given column must all have the same type. `usefulness` returns a (possibly
//! empty) list of witnesses of usefulness. These witnesses will also be pattern-stacks.
//!
//! - base case: `n_columns == 0`.
//!     Since a pattern-stack functions like a tuple of patterns, an empty one functions like the
//!     unit type. Thus `q` is useful iff there are no rows above it, i.e. if `n == 0`.
//!
//! - inductive case: `n_columns > 0`.
//!     We need a way to list the constructors we want to try. We will be more clever in the next
//!     section but for now assume we list all value constructors for the type of the first column.
//!
//!     - for each such ctor `c`:
//!
//!         - for each `q'` returned by `specialize(c, q)`:
//!
//!             - we compute `usefulness(specialize(c, p_1) ... specialize(c, p_n), q')`
//!
//!         - for each witness found, we revert specialization by pushing the constructor `c` on top.
//!
//!     - We return the concatenation of all the witnesses found, if any.
//!
//! Example:
//! ```ignore (illustrative)
//! [Some(true)] // p_1
//! [None] // p_2
//! [Some(_)] // q
//! //==>> try `None`: `specialize(None, q)` returns nothing
//! //==>> try `Some`: `specialize(Some, q)` returns a single row
//! [true] // p_1'
//! [_] // q'
//! //==>> try `true`: `specialize(true, q')` returns a single row
//! [] // p_1''
//! [] // q''
//! //==>> base case; `n != 0` so `q''` is not useful.
//! //==>> go back up a step
//! [true] // p_1'
//! [_] // q'
//! //==>> try `false`: `specialize(false, q')` returns a single row
//! [] // q''
//! //==>> base case; `n == 0` so `q''` is useful. We return the single witness `[]`
//! witnesses:
//! []
//! //==>> undo the specialization with `false`
//! witnesses:
//! [false]
//! //==>> undo the specialization with `Some`
//! witnesses:
//! [Some(false)]
//! //==>> we have tried all the constructors. The output is the single witness `[Some(false)]`.
//! ```
//!
//! This computation is done in [`is_useful`]. In practice we don't care about the list of
//! witnesses when computing reachability; we only need to know whether any exist. We do keep the
//! witnesses when computing exhaustiveness to report them to the user.
//!
//!
//! # Making usefulness tractable: constructor splitting
//!
//! We're missing one last detail: which constructors do we list? Naively listing all value
//! constructors cannot work for types like `u64` or `&str`, so we need to be more clever. The
//! first obvious insight is that we only want to list constructors that are covered by the head
//! constructor of `q`. If it's a value constructor, we only try that one. If it's a pattern-only
//! constructor, we use the final clever idea for this algorithm: _constructor splitting_, where we
//! group together constructors that behave the same.
//!
//! The details are not necessary to understand this file, so we explain them in
//! [`super::deconstruct_pat`]. Splitting is done by the [`Constructor::split`] function.
//!
//! # Constants in patterns
//!
//! There are two kinds of constants in patterns:
//!
//! * literals (`1`, `true`, `"foo"`)
//! * named or inline consts (`FOO`, `const { 5 + 6 }`)
//!
//! The latter are converted into other patterns with literals at the leaves. For example
//! `const_to_pat(const { [1, 2, 3] })` becomes an `Array(vec![Const(1), Const(2), Const(3)])`
//! pattern. This gets problematic when comparing the constant via `==` would behave differently
//! from matching on the constant converted to a pattern. Situations like that can occur, when
//! the user implements `PartialEq` manually, and thus could make `==` behave arbitrarily different.
//! In order to honor the `==` implementation, constants of types that implement `PartialEq` manually
//! stay as a full constant and become an `Opaque` pattern. These `Opaque` patterns do not participate
//! in exhaustiveness, specialization or overlap checking.

use self::ArmType::*;
use self::Usefulness::*;
use super::deconstruct_pat::{Constructor, DeconstructedPat, Fields, SplitWildcard};
use crate::errors::{NonExhaustiveOmittedPattern, Uncovered};

use rustc_data_structures::captures::Captures;

use rustc_arena::TypedArena;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_hir::def_id::DefId;
use rustc_hir::HirId;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS;
use rustc_span::{Span, DUMMY_SP};

use smallvec::{smallvec, SmallVec};
use std::fmt;
use std::iter::once;

pub(crate) struct MatchCheckCtxt<'p, 'tcx> {
    pub(crate) tcx: TyCtxt<'tcx>,
    /// The module in which the match occurs. This is necessary for
    /// checking inhabited-ness of types because whether a type is (visibly)
    /// inhabited can depend on whether it was defined in the current module or
    /// not. E.g., `struct Foo { _private: ! }` cannot be seen to be empty
    /// outside its module and should not be matchable with an empty match statement.
    pub(crate) module: DefId,
    pub(crate) param_env: ty::ParamEnv<'tcx>,
    pub(crate) pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>,
    /// Only produce `NON_EXHAUSTIVE_OMITTED_PATTERNS` lint on refutable patterns.
    pub(crate) refutable: bool,
}

impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
    pub(super) fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool {
        if self.tcx.features().exhaustive_patterns {
            !ty.is_inhabited_from(self.tcx, self.module, self.param_env)
        } else {
            false
        }
    }

    /// Returns whether the given type is an enum from another crate declared `#[non_exhaustive]`.
    pub(super) fn is_foreign_non_exhaustive_enum(&self, ty: Ty<'tcx>) -> bool {
        match ty.kind() {
            ty::Adt(def, ..) => {
                def.is_enum() && def.is_variant_list_non_exhaustive() && !def.did().is_local()
            }
            _ => false,
        }
    }
}

#[derive(Copy, Clone)]
pub(super) struct PatCtxt<'a, 'p, 'tcx> {
    pub(super) cx: &'a MatchCheckCtxt<'p, 'tcx>,
    /// Type of the current column under investigation.
    pub(super) ty: Ty<'tcx>,
    /// Span of the current pattern under investigation.
    pub(super) span: Span,
    /// Whether the current pattern is the whole pattern as found in a match arm, or if it's a
    /// subpattern.
    pub(super) is_top_level: bool,
    /// Whether the current pattern is from a `non_exhaustive` enum.
    pub(super) is_non_exhaustive: bool,
}

impl<'a, 'p, 'tcx> fmt::Debug for PatCtxt<'a, 'p, 'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("PatCtxt").field("ty", &self.ty).finish()
    }
}

/// A row of a matrix. Rows of len 1 are very common, which is why `SmallVec[_; 2]`
/// works well.
#[derive(Clone)]
pub(crate) struct PatStack<'p, 'tcx> {
    pub(crate) pats: SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]>,
}

impl<'p, 'tcx> PatStack<'p, 'tcx> {
    fn from_pattern(pat: &'p DeconstructedPat<'p, 'tcx>) -> Self {
        Self::from_vec(smallvec![pat])
    }

    fn from_vec(vec: SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]>) -> Self {
        PatStack { pats: vec }
    }

    fn is_empty(&self) -> bool {
        self.pats.is_empty()
    }

    fn len(&self) -> usize {
        self.pats.len()
    }

    fn head(&self) -> &'p DeconstructedPat<'p, 'tcx> {
        self.pats[0]
    }

    fn iter(&self) -> impl Iterator<Item = &DeconstructedPat<'p, 'tcx>> {
        self.pats.iter().copied()
    }

    // Recursively expand the first pattern into its subpatterns. Only useful if the pattern is an
    // or-pattern. Panics if `self` is empty.
    fn expand_or_pat<'a>(&'a self) -> impl Iterator<Item = PatStack<'p, 'tcx>> + Captures<'a> {
        self.head().iter_fields().map(move |pat| {
            let mut new_patstack = PatStack::from_pattern(pat);
            new_patstack.pats.extend_from_slice(&self.pats[1..]);
            new_patstack
        })
    }

    // Recursively expand all patterns into their subpatterns and push each `PatStack` to matrix.
    fn expand_and_extend<'a>(&'a self, matrix: &mut Matrix<'p, 'tcx>) {
        if !self.is_empty() && self.head().is_or_pat() {
            for pat in self.head().iter_fields() {
                let mut new_patstack = PatStack::from_pattern(pat);
                new_patstack.pats.extend_from_slice(&self.pats[1..]);
                if !new_patstack.is_empty() && new_patstack.head().is_or_pat() {
                    new_patstack.expand_and_extend(matrix);
                } else if !new_patstack.is_empty() {
                    matrix.push(new_patstack);
                }
            }
        }
    }

    /// This computes `S(self.head().ctor(), self)`. See top of the file for explanations.
    ///
    /// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
    /// fields filled with wild patterns.
    ///
    /// This is roughly the inverse of `Constructor::apply`.
    fn pop_head_constructor(
        &self,
        pcx: &PatCtxt<'_, 'p, 'tcx>,
        ctor: &Constructor<'tcx>,
    ) -> PatStack<'p, 'tcx> {
        // We pop the head pattern and push the new fields extracted from the arguments of
        // `self.head()`.
        let mut new_fields: SmallVec<[_; 2]> = self.head().specialize(pcx, ctor);
        new_fields.extend_from_slice(&self.pats[1..]);
        PatStack::from_vec(new_fields)
    }
}

/// Pretty-printing for matrix row.
impl<'p, 'tcx> fmt::Debug for PatStack<'p, 'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "+")?;
        for pat in self.iter() {
            write!(f, " {pat:?} +")?;
        }
        Ok(())
    }
}

/// A 2D matrix.
#[derive(Clone)]
pub(super) struct Matrix<'p, 'tcx> {
    pub patterns: Vec<PatStack<'p, 'tcx>>,
}

impl<'p, 'tcx> Matrix<'p, 'tcx> {
    fn empty() -> Self {
        Matrix { patterns: vec![] }
    }

    /// Number of columns of this matrix. `None` is the matrix is empty.
    pub(super) fn column_count(&self) -> Option<usize> {
        self.patterns.get(0).map(|r| r.len())
    }

    /// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
    /// expands it.
    fn push(&mut self, row: PatStack<'p, 'tcx>) {
        if !row.is_empty() && row.head().is_or_pat() {
            row.expand_and_extend(self);
        } else {
            self.patterns.push(row);
        }
    }

    /// Iterate over the first component of each row
    fn heads<'a>(
        &'a self,
    ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Clone + Captures<'a> {
        self.patterns.iter().map(|r| r.head())
    }

    /// This computes `S(constructor, self)`. See top of the file for explanations.
    fn specialize_constructor(
        &self,
        pcx: &PatCtxt<'_, 'p, 'tcx>,
        ctor: &Constructor<'tcx>,
    ) -> Matrix<'p, 'tcx> {
        let mut matrix = Matrix::empty();
        for row in &self.patterns {
            if ctor.is_covered_by(pcx, row.head().ctor()) {
                let new_row = row.pop_head_constructor(pcx, ctor);
                matrix.push(new_row);
            }
        }
        matrix
    }
}

/// Pretty-printer for matrices of patterns, example:
///
/// ```text
/// + _     + []                +
/// + true  + [First]           +
/// + true  + [Second(true)]    +
/// + false + [_]               +
/// + _     + [_, _, tail @ ..] +
/// ```
impl<'p, 'tcx> fmt::Debug for Matrix<'p, 'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "\n")?;

        let Matrix { patterns: m, .. } = self;
        let pretty_printed_matrix: Vec<Vec<String>> =
            m.iter().map(|row| row.iter().map(|pat| format!("{pat:?}")).collect()).collect();

        let column_count = m.iter().map(|row| row.len()).next().unwrap_or(0);
        assert!(m.iter().all(|row| row.len() == column_count));
        let column_widths: Vec<usize> = (0..column_count)
            .map(|col| pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0))
            .collect();

        for row in pretty_printed_matrix {
            write!(f, "+")?;
            for (column, pat_str) in row.into_iter().enumerate() {
                write!(f, " ")?;
                write!(f, "{:1$}", pat_str, column_widths[column])?;
                write!(f, " +")?;
            }
            write!(f, "\n")?;
        }
        Ok(())
    }
}

/// This carries the results of computing usefulness, as described at the top of the file. When
/// checking usefulness of a match branch, we use the `NoWitnesses` variant, which also keeps track
/// of potential unreachable sub-patterns (in the presence of or-patterns). When checking
/// exhaustiveness of a whole match, we use the `WithWitnesses` variant, which carries a list of
/// witnesses of non-exhaustiveness when there are any.
/// Which variant to use is dictated by `ArmType`.
#[derive(Debug)]
enum Usefulness<'p, 'tcx> {
    /// If we don't care about witnesses, simply remember if the pattern was useful.
    NoWitnesses { useful: bool },
    /// Carries a list of witnesses of non-exhaustiveness. If empty, indicates that the whole
    /// pattern is unreachable.
    WithWitnesses(Vec<Witness<'p, 'tcx>>),
}

impl<'p, 'tcx> Usefulness<'p, 'tcx> {
    fn new_useful(preference: ArmType) -> Self {
        match preference {
            // A single (empty) witness of reachability.
            FakeExtraWildcard => WithWitnesses(vec![Witness(vec![])]),
            RealArm => NoWitnesses { useful: true },
        }
    }

    fn new_not_useful(preference: ArmType) -> Self {
        match preference {
            FakeExtraWildcard => WithWitnesses(vec![]),
            RealArm => NoWitnesses { useful: false },
        }
    }

    fn is_useful(&self) -> bool {
        match self {
            Usefulness::NoWitnesses { useful } => *useful,
            Usefulness::WithWitnesses(witnesses) => !witnesses.is_empty(),
        }
    }

    /// Combine usefulnesses from two branches. This is an associative operation.
    fn extend(&mut self, other: Self) {
        match (&mut *self, other) {
            (WithWitnesses(_), WithWitnesses(o)) if o.is_empty() => {}
            (WithWitnesses(s), WithWitnesses(o)) if s.is_empty() => *self = WithWitnesses(o),
            (WithWitnesses(s), WithWitnesses(o)) => s.extend(o),
            (NoWitnesses { useful: s_useful }, NoWitnesses { useful: o_useful }) => {
                *s_useful = *s_useful || o_useful
            }
            _ => unreachable!(),
        }
    }

    /// After calculating usefulness after a specialization, call this to reconstruct a usefulness
    /// that makes sense for the matrix pre-specialization. This new usefulness can then be merged
    /// with the results of specializing with the other constructors.
    fn apply_constructor(
        self,
        pcx: &PatCtxt<'_, 'p, 'tcx>,
        matrix: &Matrix<'p, 'tcx>, // used to compute missing ctors
        ctor: &Constructor<'tcx>,
    ) -> Self {
        match self {
            NoWitnesses { .. } => self,
            WithWitnesses(ref witnesses) if witnesses.is_empty() => self,
            WithWitnesses(witnesses) => {
                let new_witnesses = if let Constructor::Missing { .. } = ctor {
                    // We got the special `Missing` constructor, so each of the missing constructors
                    // gives a new pattern that is not caught by the match. We list those patterns.
                    if pcx.is_non_exhaustive {
                        witnesses
                            .into_iter()
                            // Here we don't want the user to try to list all variants, we want them to add
                            // a wildcard, so we only suggest that.
                            .map(|witness| {
                                witness.apply_constructor(pcx, &Constructor::NonExhaustive)
                            })
                            .collect()
                    } else {
                        let mut split_wildcard = SplitWildcard::new(pcx);
                        split_wildcard.split(pcx, matrix.heads().map(DeconstructedPat::ctor));

                        // This lets us know if we skipped any variants because they are marked
                        // `doc(hidden)` or they are unstable feature gate (only stdlib types).
                        let mut hide_variant_show_wild = false;
                        // Construct for each missing constructor a "wild" version of this
                        // constructor, that matches everything that can be built with
                        // it. For example, if `ctor` is a `Constructor::Variant` for
                        // `Option::Some`, we get the pattern `Some(_)`.
                        let mut new_patterns: Vec<DeconstructedPat<'_, '_>> = split_wildcard
                            .iter_missing(pcx)
                            .filter_map(|missing_ctor| {
                                // Check if this variant is marked `doc(hidden)`
                                if missing_ctor.is_doc_hidden_variant(pcx)
                                    || missing_ctor.is_unstable_variant(pcx)
                                {
                                    hide_variant_show_wild = true;
                                    return None;
                                }
                                Some(DeconstructedPat::wild_from_ctor(pcx, missing_ctor.clone()))
                            })
                            .collect();

                        if hide_variant_show_wild {
                            new_patterns.push(DeconstructedPat::wildcard(pcx.ty, pcx.span));
                        }

                        witnesses
                            .into_iter()
                            .flat_map(|witness| {
                                new_patterns.iter().map(move |pat| {
                                    Witness(
                                        witness
                                            .0
                                            .iter()
                                            .chain(once(pat))
                                            .map(DeconstructedPat::clone_and_forget_reachability)
                                            .collect(),
                                    )
                                })
                            })
                            .collect()
                    }
                } else {
                    witnesses
                        .into_iter()
                        .map(|witness| witness.apply_constructor(pcx, &ctor))
                        .collect()
                };
                WithWitnesses(new_witnesses)
            }
        }
    }
}

#[derive(Copy, Clone, Debug)]
enum ArmType {
    FakeExtraWildcard,
    RealArm,
}

/// A witness of non-exhaustiveness for error reporting, represented
/// as a list of patterns (in reverse order of construction) with
/// wildcards inside to represent elements that can take any inhabitant
/// of the type as a value.
///
/// A witness against a list of patterns should have the same types
/// and length as the pattern matched against. Because Rust `match`
/// is always against a single pattern, at the end the witness will
/// have length 1, but in the middle of the algorithm, it can contain
/// multiple patterns.
///
/// For example, if we are constructing a witness for the match against
///
/// ```compile_fail,E0004
/// struct Pair(Option<(u32, u32)>, bool);
/// # fn foo(p: Pair) {
/// match p {
///    Pair(None, _) => {}
///    Pair(_, false) => {}
/// }
/// # }
/// ```
///
/// We'll perform the following steps:
/// 1. Start with an empty witness
///     `Witness(vec![])`
/// 2. Push a witness `true` against the `false`
///     `Witness(vec![true])`
/// 3. Push a witness `Some(_)` against the `None`
///     `Witness(vec![true, Some(_)])`
/// 4. Apply the `Pair` constructor to the witnesses
///     `Witness(vec![Pair(Some(_), true)])`
///
/// The final `Pair(Some(_), true)` is then the resulting witness.
#[derive(Debug)]
pub(crate) struct Witness<'p, 'tcx>(Vec<DeconstructedPat<'p, 'tcx>>);

impl<'p, 'tcx> Witness<'p, 'tcx> {
    /// Asserts that the witness contains a single pattern, and returns it.
    fn single_pattern(self) -> DeconstructedPat<'p, 'tcx> {
        assert_eq!(self.0.len(), 1);
        self.0.into_iter().next().unwrap()
    }

    /// Constructs a partial witness for a pattern given a list of
    /// patterns expanded by the specialization step.
    ///
    /// When a pattern P is discovered to be useful, this function is used bottom-up
    /// to reconstruct a complete witness, e.g., a pattern P' that covers a subset
    /// of values, V, where each value in that set is not covered by any previously
    /// used patterns and is covered by the pattern P'. Examples:
    ///
    /// left_ty: tuple of 3 elements
    /// pats: [10, 20, _]           => (10, 20, _)
    ///
    /// left_ty: struct X { a: (bool, &'static str), b: usize}
    /// pats: [(false, "foo"), 42]  => X { a: (false, "foo"), b: 42 }
    fn apply_constructor(mut self, pcx: &PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>) -> Self {
        let pat = {
            let len = self.0.len();
            let arity = ctor.arity(pcx);
            let pats = self.0.drain((len - arity)..).rev();
            let fields = Fields::from_iter(pcx.cx, pats);
            DeconstructedPat::new(ctor.clone(), fields, pcx.ty, pcx.span)
        };

        self.0.push(pat);

        self
    }
}

/// Algorithm from <http://moscova.inria.fr/~maranget/papers/warn/index.html>.
/// The algorithm from the paper has been modified to correctly handle empty
/// types. The changes are:
///   (0) We don't exit early if the pattern matrix has zero rows. We just
///       continue to recurse over columns.
///   (1) all_constructors will only return constructors that are statically
///       possible. E.g., it will only return `Ok` for `Result<T, !>`.
///
/// This finds whether a (row) vector `v` of patterns is 'useful' in relation
/// to a set of such vectors `m` - this is defined as there being a set of
/// inputs that will match `v` but not any of the sets in `m`.
///
/// All the patterns at each column of the `matrix ++ v` matrix must have the same type.
///
/// This is used both for reachability checking (if a pattern isn't useful in
/// relation to preceding patterns, it is not reachable) and exhaustiveness
/// checking (if a wildcard pattern is useful in relation to a matrix, the
/// matrix isn't exhaustive).
///
/// `is_under_guard` is used to inform if the pattern has a guard. If it
/// has one it must not be inserted into the matrix. This shouldn't be
/// relied on for soundness.
#[instrument(level = "debug", skip(cx, matrix, lint_root), ret)]
fn is_useful<'p, 'tcx>(
    cx: &MatchCheckCtxt<'p, 'tcx>,
    matrix: &Matrix<'p, 'tcx>,
    v: &PatStack<'p, 'tcx>,
    witness_preference: ArmType,
    lint_root: HirId,
    is_under_guard: bool,
    is_top_level: bool,
) -> Usefulness<'p, 'tcx> {
    debug!(?matrix, ?v);
    let Matrix { patterns: rows, .. } = matrix;

    // The base case. We are pattern-matching on () and the return value is
    // based on whether our matrix has a row or not.
    // NOTE: This could potentially be optimized by checking rows.is_empty()
    // first and then, if v is non-empty, the return value is based on whether
    // the type of the tuple we're checking is inhabited or not.
    if v.is_empty() {
        let ret = if rows.is_empty() {
            Usefulness::new_useful(witness_preference)
        } else {
            Usefulness::new_not_useful(witness_preference)
        };
        debug!(?ret);
        return ret;
    }

    debug_assert!(rows.iter().all(|r| r.len() == v.len()));

    // If the first pattern is an or-pattern, expand it.
    let mut ret = Usefulness::new_not_useful(witness_preference);
    if v.head().is_or_pat() {
        debug!("expanding or-pattern");
        // We try each or-pattern branch in turn.
        let mut matrix = matrix.clone();
        for v in v.expand_or_pat() {
            debug!(?v);
            let usefulness = ensure_sufficient_stack(|| {
                is_useful(cx, &matrix, &v, witness_preference, lint_root, is_under_guard, false)
            });
            debug!(?usefulness);
            ret.extend(usefulness);
            // If pattern has a guard don't add it to the matrix.
            if !is_under_guard {
                // We push the already-seen patterns into the matrix in order to detect redundant
                // branches like `Some(_) | Some(0)`.
                matrix.push(v);
            }
        }
    } else {
        let mut ty = v.head().ty();

        // Opaque types can't get destructured/split, but the patterns can
        // actually hint at hidden types, so we use the patterns' types instead.
        if let ty::Alias(ty::Opaque, ..) = ty.kind() {
            if let Some(row) = rows.first() {
                ty = row.head().ty();
            }
        }
        let is_non_exhaustive = cx.is_foreign_non_exhaustive_enum(ty);
        debug!("v.head: {:?}, v.span: {:?}", v.head(), v.head().span());
        let pcx = &PatCtxt { cx, ty, span: v.head().span(), is_top_level, is_non_exhaustive };

        let v_ctor = v.head().ctor();
        debug!(?v_ctor);
        if let Constructor::IntRange(ctor_range) = &v_ctor {
            // Lint on likely incorrect range patterns (#63987)
            ctor_range.lint_overlapping_range_endpoints(
                pcx,
                matrix.heads(),
                matrix.column_count().unwrap_or(0),
                lint_root,
            )
        }
        // We split the head constructor of `v`.
        let split_ctors = v_ctor.split(pcx, matrix.heads().map(DeconstructedPat::ctor));
        let is_non_exhaustive_and_wild = is_non_exhaustive && v_ctor.is_wildcard();
        // For each constructor, we compute whether there's a value that starts with it that would
        // witness the usefulness of `v`.
        let start_matrix = &matrix;
        for ctor in split_ctors {
            debug!("specialize({:?})", ctor);
            // We cache the result of `Fields::wildcards` because it is used a lot.
            let spec_matrix = start_matrix.specialize_constructor(pcx, &ctor);
            let v = v.pop_head_constructor(pcx, &ctor);
            let usefulness = ensure_sufficient_stack(|| {
                is_useful(
                    cx,
                    &spec_matrix,
                    &v,
                    witness_preference,
                    lint_root,
                    is_under_guard,
                    false,
                )
            });
            let usefulness = usefulness.apply_constructor(pcx, start_matrix, &ctor);

            // When all the conditions are met we have a match with a `non_exhaustive` enum
            // that has the potential to trigger the `non_exhaustive_omitted_patterns` lint.
            // To understand the workings checkout `Constructor::split` and `SplitWildcard::new/into_ctors`
            if is_non_exhaustive_and_wild
                // Only emit a lint on refutable patterns.
                && cx.refutable
                // We check that the match has a wildcard pattern and that wildcard is useful,
                // meaning there are variants that are covered by the wildcard. Without the check
                // for `witness_preference` the lint would trigger on `if let NonExhaustiveEnum::A = foo {}`
                && usefulness.is_useful() && matches!(witness_preference, RealArm)
                && matches!(
                    &ctor,
                    Constructor::Missing { nonexhaustive_enum_missing_real_variants: true }
                )
            {
                let patterns = {
                    let mut split_wildcard = SplitWildcard::new(pcx);
                    split_wildcard.split(pcx, matrix.heads().map(DeconstructedPat::ctor));
                    // Construct for each missing constructor a "wild" version of this
                    // constructor, that matches everything that can be built with
                    // it. For example, if `ctor` is a `Constructor::Variant` for
                    // `Option::Some`, we get the pattern `Some(_)`.
                    split_wildcard
                        .iter_missing(pcx)
                        // Filter out the `NonExhaustive` because we want to list only real
                        // variants. Also remove any unstable feature gated variants.
                        // Because of how we computed `nonexhaustive_enum_missing_real_variants`,
                        // this will not return an empty `Vec`.
                        .filter(|c| !(c.is_non_exhaustive() || c.is_unstable_variant(pcx)))
                        .cloned()
                        .map(|missing_ctor| DeconstructedPat::wild_from_ctor(pcx, missing_ctor))
                        .collect::<Vec<_>>()
                };

                // Report that a match of a `non_exhaustive` enum marked with `non_exhaustive_omitted_patterns`
                // is not exhaustive enough.
                //
                // NB: The partner lint for structs lives in `compiler/rustc_hir_analysis/src/check/pat.rs`.
                cx.tcx.emit_spanned_lint(
                    NON_EXHAUSTIVE_OMITTED_PATTERNS,
                    lint_root,
                    pcx.span,
                    NonExhaustiveOmittedPattern {
                        scrut_ty: pcx.ty,
                        uncovered: Uncovered::new(pcx.span, pcx.cx, patterns),
                    },
                );
            }

            ret.extend(usefulness);
        }
    }

    if ret.is_useful() {
        v.head().set_reachable();
    }

    ret
}

/// The arm of a match expression.
#[derive(Clone, Copy, Debug)]
pub(crate) struct MatchArm<'p, 'tcx> {
    /// The pattern must have been lowered through `check_match::MatchVisitor::lower_pattern`.
    pub(crate) pat: &'p DeconstructedPat<'p, 'tcx>,
    pub(crate) hir_id: HirId,
    pub(crate) has_guard: bool,
}

/// Indicates whether or not a given arm is reachable.
#[derive(Clone, Debug)]
pub(crate) enum Reachability {
    /// The arm is reachable. This additionally carries a set of or-pattern branches that have been
    /// found to be unreachable despite the overall arm being reachable. Used only in the presence
    /// of or-patterns, otherwise it stays empty.
    Reachable(Vec<Span>),
    /// The arm is unreachable.
    Unreachable,
}

/// The output of checking a match for exhaustiveness and arm reachability.
pub(crate) struct UsefulnessReport<'p, 'tcx> {
    /// For each arm of the input, whether that arm is reachable after the arms above it.
    pub(crate) arm_usefulness: Vec<(MatchArm<'p, 'tcx>, Reachability)>,
    /// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
    /// exhaustiveness.
    pub(crate) non_exhaustiveness_witnesses: Vec<DeconstructedPat<'p, 'tcx>>,
}

/// The entrypoint for the usefulness algorithm. Computes whether a match is exhaustive and which
/// of its arms are reachable.
///
/// Note: the input patterns must have been lowered through
/// `check_match::MatchVisitor::lower_pattern`.
#[instrument(skip(cx, arms), level = "debug")]
pub(crate) fn compute_match_usefulness<'p, 'tcx>(
    cx: &MatchCheckCtxt<'p, 'tcx>,
    arms: &[MatchArm<'p, 'tcx>],
    lint_root: HirId,
    scrut_ty: Ty<'tcx>,
) -> UsefulnessReport<'p, 'tcx> {
    let mut matrix = Matrix::empty();
    let arm_usefulness: Vec<_> = arms
        .iter()
        .copied()
        .map(|arm| {
            debug!(?arm);
            let v = PatStack::from_pattern(arm.pat);
            is_useful(cx, &matrix, &v, RealArm, arm.hir_id, arm.has_guard, true);
            if !arm.has_guard {
                matrix.push(v);
            }
            let reachability = if arm.pat.is_reachable() {
                Reachability::Reachable(arm.pat.unreachable_spans())
            } else {
                Reachability::Unreachable
            };
            (arm, reachability)
        })
        .collect();

    let wild_pattern = cx.pattern_arena.alloc(DeconstructedPat::wildcard(scrut_ty, DUMMY_SP));
    let v = PatStack::from_pattern(wild_pattern);
    let usefulness = is_useful(cx, &matrix, &v, FakeExtraWildcard, lint_root, false, true);
    let non_exhaustiveness_witnesses = match usefulness {
        WithWitnesses(pats) => pats.into_iter().map(|w| w.single_pattern()).collect(),
        NoWitnesses { .. } => bug!(),
    };
    UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses }
}