1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
//! An iterator over the type substructure.
//! WARNING: this does not keep track of the region depth.
use crate::ty::{self, Ty};
use crate::ty::{GenericArg, GenericArgKind};
use rustc_data_structures::sso::SsoHashSet;
use smallvec::SmallVec;
// The TypeWalker's stack is hot enough that it's worth going to some effort to
// avoid heap allocations.
type TypeWalkerStack<'tcx> = SmallVec<[GenericArg<'tcx>; 8]>;
pub struct TypeWalker<'tcx> {
stack: TypeWalkerStack<'tcx>,
last_subtree: usize,
pub visited: SsoHashSet<GenericArg<'tcx>>,
}
/// An iterator for walking the type tree.
///
/// It's very easy to produce a deeply
/// nested type tree with a lot of
/// identical subtrees. In order to work efficiently
/// in this situation walker only visits each type once.
/// It maintains a set of visited types and
/// skips any types that are already there.
impl<'tcx> TypeWalker<'tcx> {
pub fn new(root: GenericArg<'tcx>) -> Self {
Self { stack: smallvec![root], last_subtree: 1, visited: SsoHashSet::new() }
}
/// Skips the subtree corresponding to the last type
/// returned by `next()`.
///
/// Example: Imagine you are walking `Foo<Bar<i32>, usize>`.
///
/// ```ignore (illustrative)
/// let mut iter: TypeWalker = ...;
/// iter.next(); // yields Foo
/// iter.next(); // yields Bar<i32>
/// iter.skip_current_subtree(); // skips i32
/// iter.next(); // yields usize
/// ```
pub fn skip_current_subtree(&mut self) {
self.stack.truncate(self.last_subtree);
}
}
impl<'tcx> Iterator for TypeWalker<'tcx> {
type Item = GenericArg<'tcx>;
fn next(&mut self) -> Option<GenericArg<'tcx>> {
debug!("next(): stack={:?}", self.stack);
loop {
let next = self.stack.pop()?;
self.last_subtree = self.stack.len();
if self.visited.insert(next) {
push_inner(&mut self.stack, next);
debug!("next: stack={:?}", self.stack);
return Some(next);
}
}
}
}
impl<'tcx> GenericArg<'tcx> {
/// Iterator that walks `self` and any types reachable from
/// `self`, in depth-first order. Note that just walks the types
/// that appear in `self`, it does not descend into the fields of
/// structs or variants. For example:
///
/// ```text
/// isize => { isize }
/// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
/// [isize] => { [isize], isize }
/// ```
pub fn walk(self) -> TypeWalker<'tcx> {
TypeWalker::new(self)
}
/// Iterator that walks the immediate children of `self`. Hence
/// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
/// (but not `i32`, like `walk`).
///
/// Iterator only walks items once.
/// It accepts visited set, updates it with all visited types
/// and skips any types that are already there.
pub fn walk_shallow(
self,
visited: &mut SsoHashSet<GenericArg<'tcx>>,
) -> impl Iterator<Item = GenericArg<'tcx>> {
let mut stack = SmallVec::new();
push_inner(&mut stack, self);
stack.retain(|a| visited.insert(*a));
stack.into_iter()
}
}
impl<'tcx> Ty<'tcx> {
/// Iterator that walks `self` and any types reachable from
/// `self`, in depth-first order. Note that just walks the types
/// that appear in `self`, it does not descend into the fields of
/// structs or variants. For example:
///
/// ```text
/// isize => { isize }
/// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
/// [isize] => { [isize], isize }
/// ```
pub fn walk(self) -> TypeWalker<'tcx> {
TypeWalker::new(self.into())
}
}
impl<'tcx> ty::Const<'tcx> {
/// Iterator that walks `self` and any types reachable from
/// `self`, in depth-first order. Note that just walks the types
/// that appear in `self`, it does not descend into the fields of
/// structs or variants. For example:
///
/// ```text
/// isize => { isize }
/// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
/// [isize] => { [isize], isize }
/// ```
pub fn walk(self) -> TypeWalker<'tcx> {
TypeWalker::new(self.into())
}
}
/// We push `GenericArg`s on the stack in reverse order so as to
/// maintain a pre-order traversal. As of the time of this
/// writing, the fact that the traversal is pre-order is not
/// known to be significant to any code, but it seems like the
/// natural order one would expect (basically, the order of the
/// types as they are written).
fn push_inner<'tcx>(stack: &mut TypeWalkerStack<'tcx>, parent: GenericArg<'tcx>) {
match parent.unpack() {
GenericArgKind::Type(parent_ty) => match *parent_ty.kind() {
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Str
| ty::Infer(_)
| ty::Param(_)
| ty::Never
| ty::Error(_)
| ty::Placeholder(..)
| ty::Bound(..)
| ty::Foreign(..) => {}
ty::Array(ty, len) => {
stack.push(len.into());
stack.push(ty.into());
}
ty::Slice(ty) => {
stack.push(ty.into());
}
ty::RawPtr(mt) => {
stack.push(mt.ty.into());
}
ty::Ref(lt, ty, _) => {
stack.push(ty.into());
stack.push(lt.into());
}
ty::Alias(_, data) => {
stack.extend(data.args.iter().rev());
}
ty::Dynamic(obj, lt, _) => {
stack.push(lt.into());
stack.extend(obj.iter().rev().flat_map(|predicate| {
let (args, opt_ty) = match predicate.skip_binder() {
ty::ExistentialPredicate::Trait(tr) => (tr.args, None),
ty::ExistentialPredicate::Projection(p) => (p.args, Some(p.term)),
ty::ExistentialPredicate::AutoTrait(_) =>
// Empty iterator
{
(ty::GenericArgs::empty(), None)
}
};
args.iter().rev().chain(opt_ty.map(|term| match term.unpack() {
ty::TermKind::Ty(ty) => ty.into(),
ty::TermKind::Const(ct) => ct.into(),
}))
}));
}
ty::Adt(_, args)
| ty::Closure(_, args)
| ty::Generator(_, args, _)
| ty::GeneratorWitness(_, args)
| ty::FnDef(_, args) => {
stack.extend(args.iter().rev());
}
ty::Tuple(ts) => stack.extend(ts.iter().rev().map(GenericArg::from)),
ty::FnPtr(sig) => {
stack.push(sig.skip_binder().output().into());
stack.extend(sig.skip_binder().inputs().iter().copied().rev().map(|ty| ty.into()));
}
},
GenericArgKind::Lifetime(_) => {}
GenericArgKind::Const(parent_ct) => {
stack.push(parent_ct.ty().into());
match parent_ct.kind() {
ty::ConstKind::Infer(_)
| ty::ConstKind::Param(_)
| ty::ConstKind::Placeholder(_)
| ty::ConstKind::Bound(..)
| ty::ConstKind::Value(_)
| ty::ConstKind::Error(_) => {}
ty::ConstKind::Expr(expr) => match expr {
ty::Expr::UnOp(_, v) => push_inner(stack, v.into()),
ty::Expr::Binop(_, l, r) => {
push_inner(stack, r.into());
push_inner(stack, l.into())
}
ty::Expr::FunctionCall(func, args) => {
for a in args.iter().rev() {
push_inner(stack, a.into());
}
push_inner(stack, func.into());
}
ty::Expr::Cast(_, c, t) => {
push_inner(stack, t.into());
push_inner(stack, c.into());
}
},
ty::ConstKind::Unevaluated(ct) => {
stack.extend(ct.args.iter().rev());
}
}
}
}
}