1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
use crate::FnCtxt;
use rustc_data_structures::{
fx::{FxHashMap, FxHashSet},
graph::WithSuccessors,
graph::{iterate::DepthFirstSearch, vec_graph::VecGraph},
};
use rustc_middle::ty::{self, Ty};
impl<'tcx> FnCtxt<'_, 'tcx> {
/// Performs type inference fallback, setting `FnCtxt::fallback_has_occurred`
/// if fallback has occurred.
pub(super) fn type_inference_fallback(&self) {
debug!(
"type-inference-fallback start obligations: {:#?}",
self.fulfillment_cx.borrow_mut().pending_obligations()
);
// All type checking constraints were added, try to fallback unsolved variables.
self.select_obligations_where_possible(|_| {});
debug!(
"type-inference-fallback post selection obligations: {:#?}",
self.fulfillment_cx.borrow_mut().pending_obligations()
);
// Check if we have any unsolved variables. If not, no need for fallback.
let unsolved_variables = self.unsolved_variables();
if unsolved_variables.is_empty() {
return;
}
let diverging_fallback = self.calculate_diverging_fallback(&unsolved_variables);
// We do fallback in two passes, to try to generate
// better error messages.
// The first time, we do *not* replace opaque types.
for ty in unsolved_variables {
debug!("unsolved_variable = {:?}", ty);
self.fallback_if_possible(ty, &diverging_fallback);
}
// We now see if we can make progress. This might cause us to
// unify inference variables for opaque types, since we may
// have unified some other type variables during the first
// phase of fallback. This means that we only replace
// inference variables with their underlying opaque types as a
// last resort.
//
// In code like this:
//
// ```rust
// type MyType = impl Copy;
// fn produce() -> MyType { true }
// fn bad_produce() -> MyType { panic!() }
// ```
//
// we want to unify the opaque inference variable in `bad_produce`
// with the diverging fallback for `panic!` (e.g. `()` or `!`).
// This will produce a nice error message about conflicting concrete
// types for `MyType`.
//
// If we had tried to fallback the opaque inference variable to `MyType`,
// we will generate a confusing type-check error that does not explicitly
// refer to opaque types.
self.select_obligations_where_possible(|_| {});
}
// Tries to apply a fallback to `ty` if it is an unsolved variable.
//
// - Unconstrained ints are replaced with `i32`.
//
// - Unconstrained floats are replaced with `f64`.
//
// - Non-numerics may get replaced with `()` or `!`, depending on
// how they were categorized by `calculate_diverging_fallback`
// (and the setting of `#![feature(never_type_fallback)]`).
//
// Fallback becomes very dubious if we have encountered
// type-checking errors. In that case, fallback to Error.
//
// Sets `FnCtxt::fallback_has_occurred` if fallback is performed
// during this call.
fn fallback_if_possible(
&self,
ty: Ty<'tcx>,
diverging_fallback: &FxHashMap<Ty<'tcx>, Ty<'tcx>>,
) {
// Careful: we do NOT shallow-resolve `ty`. We know that `ty`
// is an unsolved variable, and we determine its fallback
// based solely on how it was created, not what other type
// variables it may have been unified with since then.
//
// The reason this matters is that other attempts at fallback
// may (in principle) conflict with this fallback, and we wish
// to generate a type error in that case. (However, this
// actually isn't true right now, because we're only using the
// builtin fallback rules. This would be true if we were using
// user-supplied fallbacks. But it's still useful to write the
// code to detect bugs.)
//
// (Note though that if we have a general type variable `?T`
// that is then unified with an integer type variable `?I`
// that ultimately never gets resolved to a special integral
// type, `?T` is not considered unsolved, but `?I` is. The
// same is true for float variables.)
let fallback = match ty.kind() {
_ if let Some(e) = self.tainted_by_errors() => self.tcx.ty_error_with_guaranteed(e),
ty::Infer(ty::IntVar(_)) => self.tcx.types.i32,
ty::Infer(ty::FloatVar(_)) => self.tcx.types.f64,
_ => match diverging_fallback.get(&ty) {
Some(&fallback_ty) => fallback_ty,
None => return,
},
};
debug!("fallback_if_possible(ty={:?}): defaulting to `{:?}`", ty, fallback);
let span = self
.infcx
.type_var_origin(ty)
.map(|origin| origin.span)
.unwrap_or(rustc_span::DUMMY_SP);
self.demand_eqtype(span, ty, fallback);
self.fallback_has_occurred.set(true);
}
/// The "diverging fallback" system is rather complicated. This is
/// a result of our need to balance 'do the right thing' with
/// backwards compatibility.
///
/// "Diverging" type variables are variables created when we
/// coerce a `!` type into an unbound type variable `?X`. If they
/// never wind up being constrained, the "right and natural" thing
/// is that `?X` should "fallback" to `!`. This means that e.g. an
/// expression like `Some(return)` will ultimately wind up with a
/// type like `Option<!>` (presuming it is not assigned or
/// constrained to have some other type).
///
/// However, the fallback used to be `()` (before the `!` type was
/// added). Moreover, there are cases where the `!` type 'leaks
/// out' from dead code into type variables that affect live
/// code. The most common case is something like this:
///
/// ```rust
/// # fn foo() -> i32 { 4 }
/// match foo() {
/// 22 => Default::default(), // call this type `?D`
/// _ => return, // return has type `!`
/// } // call the type of this match `?M`
/// ```
///
/// Here, coercing the type `!` into `?M` will create a diverging
/// type variable `?X` where `?X <: ?M`. We also have that `?D <:
/// ?M`. If `?M` winds up unconstrained, then `?X` will
/// fallback. If it falls back to `!`, then all the type variables
/// will wind up equal to `!` -- this includes the type `?D`
/// (since `!` doesn't implement `Default`, we wind up a "trait
/// not implemented" error in code like this). But since the
/// original fallback was `()`, this code used to compile with `?D
/// = ()`. This is somewhat surprising, since `Default::default()`
/// on its own would give an error because the types are
/// insufficiently constrained.
///
/// Our solution to this dilemma is to modify diverging variables
/// so that they can *either* fallback to `!` (the default) or to
/// `()` (the backwards compatibility case). We decide which
/// fallback to use based on whether there is a coercion pattern
/// like this:
///
/// ```ignore (not-rust)
/// ?Diverging -> ?V
/// ?NonDiverging -> ?V
/// ?V != ?NonDiverging
/// ```
///
/// Here `?Diverging` represents some diverging type variable and
/// `?NonDiverging` represents some non-diverging type
/// variable. `?V` can be any type variable (diverging or not), so
/// long as it is not equal to `?NonDiverging`.
///
/// Intuitively, what we are looking for is a case where a
/// "non-diverging" type variable (like `?M` in our example above)
/// is coerced *into* some variable `?V` that would otherwise
/// fallback to `!`. In that case, we make `?V` fallback to `!`,
/// along with anything that would flow into `?V`.
///
/// The algorithm we use:
/// * Identify all variables that are coerced *into* by a
/// diverging variable. Do this by iterating over each
/// diverging, unsolved variable and finding all variables
/// reachable from there. Call that set `D`.
/// * Walk over all unsolved, non-diverging variables, and find
/// any variable that has an edge into `D`.
fn calculate_diverging_fallback(
&self,
unsolved_variables: &[Ty<'tcx>],
) -> FxHashMap<Ty<'tcx>, Ty<'tcx>> {
debug!("calculate_diverging_fallback({:?})", unsolved_variables);
let relationships = self.fulfillment_cx.borrow_mut().relationships().clone();
// Construct a coercion graph where an edge `A -> B` indicates
// a type variable is that is coerced
let coercion_graph = self.create_coercion_graph();
// Extract the unsolved type inference variable vids; note that some
// unsolved variables are integer/float variables and are excluded.
let unsolved_vids = unsolved_variables.iter().filter_map(|ty| ty.ty_vid());
// Compute the diverging root vids D -- that is, the root vid of
// those type variables that (a) are the target of a coercion from
// a `!` type and (b) have not yet been solved.
//
// These variables are the ones that are targets for fallback to
// either `!` or `()`.
let diverging_roots: FxHashSet<ty::TyVid> = self
.diverging_type_vars
.borrow()
.iter()
.map(|&ty| self.shallow_resolve(ty))
.filter_map(|ty| ty.ty_vid())
.map(|vid| self.root_var(vid))
.collect();
debug!(
"calculate_diverging_fallback: diverging_type_vars={:?}",
self.diverging_type_vars.borrow()
);
debug!("calculate_diverging_fallback: diverging_roots={:?}", diverging_roots);
// Find all type variables that are reachable from a diverging
// type variable. These will typically default to `!`, unless
// we find later that they are *also* reachable from some
// other type variable outside this set.
let mut roots_reachable_from_diverging = DepthFirstSearch::new(&coercion_graph);
let mut diverging_vids = vec![];
let mut non_diverging_vids = vec![];
for unsolved_vid in unsolved_vids {
let root_vid = self.root_var(unsolved_vid);
debug!(
"calculate_diverging_fallback: unsolved_vid={:?} root_vid={:?} diverges={:?}",
unsolved_vid,
root_vid,
diverging_roots.contains(&root_vid),
);
if diverging_roots.contains(&root_vid) {
diverging_vids.push(unsolved_vid);
roots_reachable_from_diverging.push_start_node(root_vid);
debug!(
"calculate_diverging_fallback: root_vid={:?} reaches {:?}",
root_vid,
coercion_graph.depth_first_search(root_vid).collect::<Vec<_>>()
);
// drain the iterator to visit all nodes reachable from this node
roots_reachable_from_diverging.complete_search();
} else {
non_diverging_vids.push(unsolved_vid);
}
}
debug!(
"calculate_diverging_fallback: roots_reachable_from_diverging={:?}",
roots_reachable_from_diverging,
);
// Find all type variables N0 that are not reachable from a
// diverging variable, and then compute the set reachable from
// N0, which we call N. These are the *non-diverging* type
// variables. (Note that this set consists of "root variables".)
let mut roots_reachable_from_non_diverging = DepthFirstSearch::new(&coercion_graph);
for &non_diverging_vid in &non_diverging_vids {
let root_vid = self.root_var(non_diverging_vid);
if roots_reachable_from_diverging.visited(root_vid) {
continue;
}
roots_reachable_from_non_diverging.push_start_node(root_vid);
roots_reachable_from_non_diverging.complete_search();
}
debug!(
"calculate_diverging_fallback: roots_reachable_from_non_diverging={:?}",
roots_reachable_from_non_diverging,
);
debug!("inherited: {:#?}", self.inh.fulfillment_cx.borrow_mut().pending_obligations());
debug!("obligations: {:#?}", self.fulfillment_cx.borrow_mut().pending_obligations());
debug!("relationships: {:#?}", relationships);
// For each diverging variable, figure out whether it can
// reach a member of N. If so, it falls back to `()`. Else
// `!`.
let mut diverging_fallback = FxHashMap::default();
diverging_fallback.reserve(diverging_vids.len());
for &diverging_vid in &diverging_vids {
let diverging_ty = self.tcx.mk_ty_var(diverging_vid);
let root_vid = self.root_var(diverging_vid);
let can_reach_non_diverging = coercion_graph
.depth_first_search(root_vid)
.any(|n| roots_reachable_from_non_diverging.visited(n));
let mut relationship = ty::FoundRelationships { self_in_trait: false, output: false };
for (vid, rel) in relationships.iter() {
if self.root_var(*vid) == root_vid {
relationship.self_in_trait |= rel.self_in_trait;
relationship.output |= rel.output;
}
}
if relationship.self_in_trait && relationship.output {
// This case falls back to () to ensure that the code pattern in
// src/test/ui/never_type/fallback-closure-ret.rs continues to
// compile when never_type_fallback is enabled.
//
// This rule is not readily explainable from first principles,
// but is rather intended as a patchwork fix to ensure code
// which compiles before the stabilization of never type
// fallback continues to work.
//
// Typically this pattern is encountered in a function taking a
// closure as a parameter, where the return type of that closure
// (checked by `relationship.output`) is expected to implement
// some trait (checked by `relationship.self_in_trait`). This
// can come up in non-closure cases too, so we do not limit this
// rule to specifically `FnOnce`.
//
// When the closure's body is something like `panic!()`, the
// return type would normally be inferred to `!`. However, it
// needs to fall back to `()` in order to still compile, as the
// trait is specifically implemented for `()` but not `!`.
//
// For details on the requirements for these relationships to be
// set, see the relationship finding module in
// compiler/rustc_trait_selection/src/traits/relationships.rs.
debug!("fallback to () - found trait and projection: {:?}", diverging_vid);
diverging_fallback.insert(diverging_ty, self.tcx.types.unit);
} else if can_reach_non_diverging {
debug!("fallback to () - reached non-diverging: {:?}", diverging_vid);
diverging_fallback.insert(diverging_ty, self.tcx.types.unit);
} else {
debug!("fallback to ! - all diverging: {:?}", diverging_vid);
diverging_fallback.insert(diverging_ty, self.tcx.mk_diverging_default());
}
}
diverging_fallback
}
/// Returns a graph whose nodes are (unresolved) inference variables and where
/// an edge `?A -> ?B` indicates that the variable `?A` is coerced to `?B`.
fn create_coercion_graph(&self) -> VecGraph<ty::TyVid> {
let pending_obligations = self.fulfillment_cx.borrow_mut().pending_obligations();
debug!("create_coercion_graph: pending_obligations={:?}", pending_obligations);
let coercion_edges: Vec<(ty::TyVid, ty::TyVid)> = pending_obligations
.into_iter()
.filter_map(|obligation| {
// The predicates we are looking for look like `Coerce(?A -> ?B)`.
// They will have no bound variables.
obligation.predicate.kind().no_bound_vars()
})
.filter_map(|atom| {
// We consider both subtyping and coercion to imply 'flow' from
// some position in the code `a` to a different position `b`.
// This is then used to determine which variables interact with
// live code, and as such must fall back to `()` to preserve
// soundness.
//
// In practice currently the two ways that this happens is
// coercion and subtyping.
let (a, b) = if let ty::PredicateKind::Coerce(ty::CoercePredicate { a, b }) = atom {
(a, b)
} else if let ty::PredicateKind::Subtype(ty::SubtypePredicate {
a_is_expected: _,
a,
b,
}) = atom
{
(a, b)
} else {
return None;
};
let a_vid = self.root_vid(a)?;
let b_vid = self.root_vid(b)?;
Some((a_vid, b_vid))
})
.collect();
debug!("create_coercion_graph: coercion_edges={:?}", coercion_edges);
let num_ty_vars = self.num_ty_vars();
VecGraph::new(num_ty_vars, coercion_edges)
}
/// If `ty` is an unresolved type variable, returns its root vid.
fn root_vid(&self, ty: Ty<'tcx>) -> Option<ty::TyVid> {
Some(self.root_var(self.shallow_resolve(ty).ty_vid()?))
}
}