1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
//! This file implements "place projections"; basically a symmetric API for 3 types: MPlaceTy, OpTy, PlaceTy.
//!
//! OpTy and PlaceTy generally work by "let's see if we are actually an MPlaceTy, and do something custom if not".
//! For PlaceTy, the custom thing is basically always to call `force_allocation` and then use the MPlaceTy logic anyway.
//! For OpTy, the custom thing on field pojections has to be pretty clever (since `Operand::Immediate` can have fields),
//! but for array/slice operations it only has to worry about `Operand::Uninit`. That makes the value part trivial,
//! but we still need to do bounds checking and adjust the layout. To not duplicate that with MPlaceTy, we actually
//! implement the logic on OpTy, and MPlaceTy calls that.

use either::{Left, Right};

use rustc_middle::mir;
use rustc_middle::ty;
use rustc_middle::ty::layout::LayoutOf;
use rustc_target::abi::{self, Abi, VariantIdx};

use super::{
    ImmTy, Immediate, InterpCx, InterpResult, MPlaceTy, Machine, MemPlaceMeta, OpTy, PlaceTy,
    Provenance, Scalar,
};

// FIXME: Working around https://github.com/rust-lang/rust/issues/54385
impl<'mir, 'tcx: 'mir, Prov, M> InterpCx<'mir, 'tcx, M>
where
    Prov: Provenance + 'static,
    M: Machine<'mir, 'tcx, Provenance = Prov>,
{
    //# Field access

    /// Offset a pointer to project to a field of a struct/union. Unlike `place_field`, this is
    /// always possible without allocating, so it can take `&self`. Also return the field's layout.
    /// This supports both struct and array fields.
    ///
    /// This also works for arrays, but then the `usize` index type is restricting.
    /// For indexing into arrays, use `mplace_index`.
    pub fn mplace_field(
        &self,
        base: &MPlaceTy<'tcx, M::Provenance>,
        field: usize,
    ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
        let offset = base.layout.fields.offset(field);
        let field_layout = base.layout.field(self, field);

        // Offset may need adjustment for unsized fields.
        let (meta, offset) = if field_layout.is_unsized() {
            // Re-use parent metadata to determine dynamic field layout.
            // With custom DSTS, this *will* execute user-defined code, but the same
            // happens at run-time so that's okay.
            match self.size_and_align_of(&base.meta, &field_layout)? {
                Some((_, align)) => (base.meta, offset.align_to(align)),
                None => {
                    // For unsized types with an extern type tail we perform no adjustments.
                    // NOTE: keep this in sync with `PlaceRef::project_field` in the codegen backend.
                    assert!(matches!(base.meta, MemPlaceMeta::None));
                    (base.meta, offset)
                }
            }
        } else {
            // base.meta could be present; we might be accessing a sized field of an unsized
            // struct.
            (MemPlaceMeta::None, offset)
        };

        // We do not look at `base.layout.align` nor `field_layout.align`, unlike
        // codegen -- mostly to see if we can get away with that
        base.offset_with_meta(offset, meta, field_layout, self)
    }

    /// Gets the place of a field inside the place, and also the field's type.
    /// Just a convenience function, but used quite a bit.
    /// This is the only projection that might have a side-effect: We cannot project
    /// into the field of a local `ScalarPair`, we have to first allocate it.
    pub fn place_field(
        &mut self,
        base: &PlaceTy<'tcx, M::Provenance>,
        field: usize,
    ) -> InterpResult<'tcx, PlaceTy<'tcx, M::Provenance>> {
        // FIXME: We could try to be smarter and avoid allocation for fields that span the
        // entire place.
        let base = self.force_allocation(base)?;
        Ok(self.mplace_field(&base, field)?.into())
    }

    pub fn operand_field(
        &self,
        base: &OpTy<'tcx, M::Provenance>,
        field: usize,
    ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
        let base = match base.as_mplace_or_imm() {
            Left(ref mplace) => {
                // We can reuse the mplace field computation logic for indirect operands.
                let field = self.mplace_field(mplace, field)?;
                return Ok(field.into());
            }
            Right(value) => value,
        };

        let field_layout = base.layout.field(self, field);
        let offset = base.layout.fields.offset(field);
        // This makes several assumptions about what layouts we will encounter; we match what
        // codegen does as good as we can (see `extract_field` in `rustc_codegen_ssa/src/mir/operand.rs`).
        let field_val: Immediate<_> = match (*base, base.layout.abi) {
            // if the entire value is uninit, then so is the field (can happen in ConstProp)
            (Immediate::Uninit, _) => Immediate::Uninit,
            // the field contains no information, can be left uninit
            _ if field_layout.is_zst() => Immediate::Uninit,
            // the field covers the entire type
            _ if field_layout.size == base.layout.size => {
                assert!(match (base.layout.abi, field_layout.abi) {
                    (Abi::Scalar(..), Abi::Scalar(..)) => true,
                    (Abi::ScalarPair(..), Abi::ScalarPair(..)) => true,
                    _ => false,
                });
                assert!(offset.bytes() == 0);
                *base
            }
            // extract fields from types with `ScalarPair` ABI
            (Immediate::ScalarPair(a_val, b_val), Abi::ScalarPair(a, b)) => {
                assert!(matches!(field_layout.abi, Abi::Scalar(..)));
                Immediate::from(if offset.bytes() == 0 {
                    debug_assert_eq!(field_layout.size, a.size(self));
                    a_val
                } else {
                    debug_assert_eq!(offset, a.size(self).align_to(b.align(self).abi));
                    debug_assert_eq!(field_layout.size, b.size(self));
                    b_val
                })
            }
            // everything else is a bug
            _ => span_bug!(
                self.cur_span(),
                "invalid field access on immediate {}, layout {:#?}",
                base,
                base.layout
            ),
        };

        Ok(ImmTy::from_immediate(field_val, field_layout).into())
    }

    //# Downcasting

    pub fn mplace_downcast(
        &self,
        base: &MPlaceTy<'tcx, M::Provenance>,
        variant: VariantIdx,
    ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
        // Downcasts only change the layout.
        // (In particular, no check about whether this is even the active variant -- that's by design,
        // see https://github.com/rust-lang/rust/issues/93688#issuecomment-1032929496.)
        assert!(!base.meta.has_meta());
        let mut base = *base;
        base.layout = base.layout.for_variant(self, variant);
        Ok(base)
    }

    pub fn place_downcast(
        &self,
        base: &PlaceTy<'tcx, M::Provenance>,
        variant: VariantIdx,
    ) -> InterpResult<'tcx, PlaceTy<'tcx, M::Provenance>> {
        // Downcast just changes the layout
        let mut base = base.clone();
        base.layout = base.layout.for_variant(self, variant);
        Ok(base)
    }

    pub fn operand_downcast(
        &self,
        base: &OpTy<'tcx, M::Provenance>,
        variant: VariantIdx,
    ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
        // Downcast just changes the layout
        let mut base = base.clone();
        base.layout = base.layout.for_variant(self, variant);
        Ok(base)
    }

    //# Slice indexing

    #[inline(always)]
    pub fn operand_index(
        &self,
        base: &OpTy<'tcx, M::Provenance>,
        index: u64,
    ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
        // Not using the layout method because we want to compute on u64
        match base.layout.fields {
            abi::FieldsShape::Array { stride, count: _ } => {
                // `count` is nonsense for slices, use the dynamic length instead.
                let len = base.len(self)?;
                if index >= len {
                    // This can only be reached in ConstProp and non-rustc-MIR.
                    throw_ub!(BoundsCheckFailed { len, index });
                }
                let offset = stride * index; // `Size` multiplication
                // All fields have the same layout.
                let field_layout = base.layout.field(self, 0);
                base.offset(offset, field_layout, self)
            }
            _ => span_bug!(
                self.cur_span(),
                "`mplace_index` called on non-array type {:?}",
                base.layout.ty
            ),
        }
    }

    /// Iterates over all fields of an array. Much more efficient than doing the
    /// same by repeatedly calling `operand_index`.
    pub fn operand_array_fields<'a>(
        &self,
        base: &'a OpTy<'tcx, Prov>,
    ) -> InterpResult<'tcx, impl Iterator<Item = InterpResult<'tcx, OpTy<'tcx, Prov>>> + 'a> {
        let len = base.len(self)?; // also asserts that we have a type where this makes sense
        let abi::FieldsShape::Array { stride, .. } = base.layout.fields else {
            span_bug!(self.cur_span(), "operand_array_fields: expected an array layout");
        };
        let field_layout = base.layout.field(self, 0);
        let dl = &self.tcx.data_layout;
        // `Size` multiplication
        Ok((0..len).map(move |i| base.offset(stride * i, field_layout, dl)))
    }

    /// Index into an array.
    pub fn mplace_index(
        &self,
        base: &MPlaceTy<'tcx, M::Provenance>,
        index: u64,
    ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
        Ok(self.operand_index(&base.into(), index)?.assert_mem_place())
    }

    pub fn place_index(
        &mut self,
        base: &PlaceTy<'tcx, M::Provenance>,
        index: u64,
    ) -> InterpResult<'tcx, PlaceTy<'tcx, M::Provenance>> {
        // There's not a lot we can do here, since we cannot have a place to a part of a local. If
        // we are accessing the only element of a 1-element array, it's still the entire local...
        // that doesn't seem worth it.
        let base = self.force_allocation(base)?;
        Ok(self.mplace_index(&base, index)?.into())
    }

    //# ConstantIndex support

    fn operand_constant_index(
        &self,
        base: &OpTy<'tcx, M::Provenance>,
        offset: u64,
        min_length: u64,
        from_end: bool,
    ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
        let n = base.len(self)?;
        if n < min_length {
            // This can only be reached in ConstProp and non-rustc-MIR.
            throw_ub!(BoundsCheckFailed { len: min_length, index: n });
        }

        let index = if from_end {
            assert!(0 < offset && offset <= min_length);
            n.checked_sub(offset).unwrap()
        } else {
            assert!(offset < min_length);
            offset
        };

        self.operand_index(base, index)
    }

    fn place_constant_index(
        &mut self,
        base: &PlaceTy<'tcx, M::Provenance>,
        offset: u64,
        min_length: u64,
        from_end: bool,
    ) -> InterpResult<'tcx, PlaceTy<'tcx, M::Provenance>> {
        let base = self.force_allocation(base)?;
        Ok(self
            .operand_constant_index(&base.into(), offset, min_length, from_end)?
            .assert_mem_place()
            .into())
    }

    //# Subslicing

    fn operand_subslice(
        &self,
        base: &OpTy<'tcx, M::Provenance>,
        from: u64,
        to: u64,
        from_end: bool,
    ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
        let len = base.len(self)?; // also asserts that we have a type where this makes sense
        let actual_to = if from_end {
            if from.checked_add(to).map_or(true, |to| to > len) {
                // This can only be reached in ConstProp and non-rustc-MIR.
                throw_ub!(BoundsCheckFailed { len: len, index: from.saturating_add(to) });
            }
            len.checked_sub(to).unwrap()
        } else {
            to
        };

        // Not using layout method because that works with usize, and does not work with slices
        // (that have count 0 in their layout).
        let from_offset = match base.layout.fields {
            abi::FieldsShape::Array { stride, .. } => stride * from, // `Size` multiplication is checked
            _ => {
                span_bug!(self.cur_span(), "unexpected layout of index access: {:#?}", base.layout)
            }
        };

        // Compute meta and new layout
        let inner_len = actual_to.checked_sub(from).unwrap();
        let (meta, ty) = match base.layout.ty.kind() {
            // It is not nice to match on the type, but that seems to be the only way to
            // implement this.
            ty::Array(inner, _) => (MemPlaceMeta::None, self.tcx.mk_array(*inner, inner_len)),
            ty::Slice(..) => {
                let len = Scalar::from_machine_usize(inner_len, self);
                (MemPlaceMeta::Meta(len), base.layout.ty)
            }
            _ => {
                span_bug!(self.cur_span(), "cannot subslice non-array type: `{:?}`", base.layout.ty)
            }
        };
        let layout = self.layout_of(ty)?;
        base.offset_with_meta(from_offset, meta, layout, self)
    }

    pub fn place_subslice(
        &mut self,
        base: &PlaceTy<'tcx, M::Provenance>,
        from: u64,
        to: u64,
        from_end: bool,
    ) -> InterpResult<'tcx, PlaceTy<'tcx, M::Provenance>> {
        let base = self.force_allocation(base)?;
        Ok(self.operand_subslice(&base.into(), from, to, from_end)?.assert_mem_place().into())
    }

    //# Applying a general projection

    /// Projects into a place.
    #[instrument(skip(self), level = "trace")]
    pub fn place_projection(
        &mut self,
        base: &PlaceTy<'tcx, M::Provenance>,
        proj_elem: mir::PlaceElem<'tcx>,
    ) -> InterpResult<'tcx, PlaceTy<'tcx, M::Provenance>> {
        use rustc_middle::mir::ProjectionElem::*;
        Ok(match proj_elem {
            OpaqueCast(ty) => {
                let mut place = base.clone();
                place.layout = self.layout_of(ty)?;
                place
            }
            Field(field, _) => self.place_field(base, field.index())?,
            Downcast(_, variant) => self.place_downcast(base, variant)?,
            Deref => self.deref_operand(&self.place_to_op(base)?)?.into(),
            Index(local) => {
                let layout = self.layout_of(self.tcx.types.usize)?;
                let n = self.local_to_op(self.frame(), local, Some(layout))?;
                let n = self.read_scalar(&n)?.to_machine_usize(self)?;
                self.place_index(base, n)?
            }
            ConstantIndex { offset, min_length, from_end } => {
                self.place_constant_index(base, offset, min_length, from_end)?
            }
            Subslice { from, to, from_end } => self.place_subslice(base, from, to, from_end)?,
        })
    }

    #[instrument(skip(self), level = "trace")]
    pub fn operand_projection(
        &self,
        base: &OpTy<'tcx, M::Provenance>,
        proj_elem: mir::PlaceElem<'tcx>,
    ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
        use rustc_middle::mir::ProjectionElem::*;
        Ok(match proj_elem {
            OpaqueCast(ty) => {
                let mut op = base.clone();
                op.layout = self.layout_of(ty)?;
                op
            }
            Field(field, _) => self.operand_field(base, field.index())?,
            Downcast(_, variant) => self.operand_downcast(base, variant)?,
            Deref => self.deref_operand(base)?.into(),
            Index(local) => {
                let layout = self.layout_of(self.tcx.types.usize)?;
                let n = self.local_to_op(self.frame(), local, Some(layout))?;
                let n = self.read_scalar(&n)?.to_machine_usize(self)?;
                self.operand_index(base, n)?
            }
            ConstantIndex { offset, min_length, from_end } => {
                self.operand_constant_index(base, offset, min_length, from_end)?
            }
            Subslice { from, to, from_end } => self.operand_subslice(base, from, to, from_end)?,
        })
    }
}