1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
use std::collections::VecDeque;
use std::rc::Rc;
use rustc_data_structures::binary_search_util;
use rustc_data_structures::frozen::Frozen;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::graph::scc::Sccs;
use rustc_errors::Diagnostic;
use rustc_hir::def_id::CRATE_DEF_ID;
use rustc_hir::CRATE_HIR_ID;
use rustc_index::vec::IndexVec;
use rustc_infer::infer::outlives::test_type_match;
use rustc_infer::infer::region_constraints::{GenericKind, VarInfos, VerifyBound, VerifyIfEq};
use rustc_infer::infer::{InferCtxt, NllRegionVariableOrigin, RegionVariableOrigin};
use rustc_middle::mir::{
Body, ClosureOutlivesRequirement, ClosureOutlivesSubject, ClosureRegionRequirements,
ConstraintCategory, Local, Location, ReturnConstraint, TerminatorKind,
};
use rustc_middle::traits::ObligationCause;
use rustc_middle::traits::ObligationCauseCode;
use rustc_middle::ty::{self, RegionVid, Ty, TyCtxt, TypeFoldable, TypeVisitable};
use rustc_span::Span;
use crate::{
constraints::{
graph::NormalConstraintGraph, ConstraintSccIndex, OutlivesConstraint, OutlivesConstraintSet,
},
diagnostics::{RegionErrorKind, RegionErrors, UniverseInfo},
member_constraints::{MemberConstraintSet, NllMemberConstraintIndex},
nll::{PoloniusOutput, ToRegionVid},
region_infer::reverse_sccs::ReverseSccGraph,
region_infer::values::{
LivenessValues, PlaceholderIndices, RegionElement, RegionValueElements, RegionValues,
ToElementIndex,
},
type_check::{free_region_relations::UniversalRegionRelations, Locations},
universal_regions::UniversalRegions,
};
mod dump_mir;
mod graphviz;
mod opaque_types;
mod reverse_sccs;
pub mod values;
pub struct RegionInferenceContext<'tcx> {
pub var_infos: VarInfos,
/// Contains the definition for every region variable. Region
/// variables are identified by their index (`RegionVid`). The
/// definition contains information about where the region came
/// from as well as its final inferred value.
definitions: IndexVec<RegionVid, RegionDefinition<'tcx>>,
/// The liveness constraints added to each region. For most
/// regions, these start out empty and steadily grow, though for
/// each universally quantified region R they start out containing
/// the entire CFG and `end(R)`.
liveness_constraints: LivenessValues<RegionVid>,
/// The outlives constraints computed by the type-check.
constraints: Frozen<OutlivesConstraintSet<'tcx>>,
/// The constraint-set, but in graph form, making it easy to traverse
/// the constraints adjacent to a particular region. Used to construct
/// the SCC (see `constraint_sccs`) and for error reporting.
constraint_graph: Frozen<NormalConstraintGraph>,
/// The SCC computed from `constraints` and the constraint
/// graph. We have an edge from SCC A to SCC B if `A: B`. Used to
/// compute the values of each region.
constraint_sccs: Rc<Sccs<RegionVid, ConstraintSccIndex>>,
/// Reverse of the SCC constraint graph -- i.e., an edge `A -> B` exists if
/// `B: A`. This is used to compute the universal regions that are required
/// to outlive a given SCC. Computed lazily.
rev_scc_graph: Option<Rc<ReverseSccGraph>>,
/// The "R0 member of [R1..Rn]" constraints, indexed by SCC.
member_constraints: Rc<MemberConstraintSet<'tcx, ConstraintSccIndex>>,
/// Records the member constraints that we applied to each scc.
/// This is useful for error reporting. Once constraint
/// propagation is done, this vector is sorted according to
/// `member_region_scc`.
member_constraints_applied: Vec<AppliedMemberConstraint>,
/// Map universe indexes to information on why we created it.
universe_causes: FxHashMap<ty::UniverseIndex, UniverseInfo<'tcx>>,
/// Contains the minimum universe of any variable within the same
/// SCC. We will ensure that no SCC contains values that are not
/// visible from this index.
scc_universes: IndexVec<ConstraintSccIndex, ty::UniverseIndex>,
/// Contains a "representative" from each SCC. This will be the
/// minimal RegionVid belonging to that universe. It is used as a
/// kind of hacky way to manage checking outlives relationships,
/// since we can 'canonicalize' each region to the representative
/// of its SCC and be sure that -- if they have the same repr --
/// they *must* be equal (though not having the same repr does not
/// mean they are unequal).
scc_representatives: IndexVec<ConstraintSccIndex, ty::RegionVid>,
/// The final inferred values of the region variables; we compute
/// one value per SCC. To get the value for any given *region*,
/// you first find which scc it is a part of.
scc_values: RegionValues<ConstraintSccIndex>,
/// Type constraints that we check after solving.
type_tests: Vec<TypeTest<'tcx>>,
/// Information about the universally quantified regions in scope
/// on this function.
universal_regions: Rc<UniversalRegions<'tcx>>,
/// Information about how the universally quantified regions in
/// scope on this function relate to one another.
universal_region_relations: Frozen<UniversalRegionRelations<'tcx>>,
}
/// Each time that `apply_member_constraint` is successful, it appends
/// one of these structs to the `member_constraints_applied` field.
/// This is used in error reporting to trace out what happened.
///
/// The way that `apply_member_constraint` works is that it effectively
/// adds a new lower bound to the SCC it is analyzing: so you wind up
/// with `'R: 'O` where `'R` is the pick-region and `'O` is the
/// minimal viable option.
#[derive(Debug)]
pub(crate) struct AppliedMemberConstraint {
/// The SCC that was affected. (The "member region".)
///
/// The vector if `AppliedMemberConstraint` elements is kept sorted
/// by this field.
pub(crate) member_region_scc: ConstraintSccIndex,
/// The "best option" that `apply_member_constraint` found -- this was
/// added as an "ad-hoc" lower-bound to `member_region_scc`.
pub(crate) min_choice: ty::RegionVid,
/// The "member constraint index" -- we can find out details about
/// the constraint from
/// `set.member_constraints[member_constraint_index]`.
pub(crate) member_constraint_index: NllMemberConstraintIndex,
}
pub(crate) struct RegionDefinition<'tcx> {
/// What kind of variable is this -- a free region? existential
/// variable? etc. (See the `NllRegionVariableOrigin` for more
/// info.)
pub(crate) origin: NllRegionVariableOrigin,
/// Which universe is this region variable defined in? This is
/// most often `ty::UniverseIndex::ROOT`, but when we encounter
/// forall-quantifiers like `for<'a> { 'a = 'b }`, we would create
/// the variable for `'a` in a fresh universe that extends ROOT.
pub(crate) universe: ty::UniverseIndex,
/// If this is 'static or an early-bound region, then this is
/// `Some(X)` where `X` is the name of the region.
pub(crate) external_name: Option<ty::Region<'tcx>>,
}
/// N.B., the variants in `Cause` are intentionally ordered. Lower
/// values are preferred when it comes to error messages. Do not
/// reorder willy nilly.
#[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq)]
pub(crate) enum Cause {
/// point inserted because Local was live at the given Location
LiveVar(Local, Location),
/// point inserted because Local was dropped at the given Location
DropVar(Local, Location),
}
/// A "type test" corresponds to an outlives constraint between a type
/// and a lifetime, like `T: 'x` or `<T as Foo>::Bar: 'x`. They are
/// translated from the `Verify` region constraints in the ordinary
/// inference context.
///
/// These sorts of constraints are handled differently than ordinary
/// constraints, at least at present. During type checking, the
/// `InferCtxt::process_registered_region_obligations` method will
/// attempt to convert a type test like `T: 'x` into an ordinary
/// outlives constraint when possible (for example, `&'a T: 'b` will
/// be converted into `'a: 'b` and registered as a `Constraint`).
///
/// In some cases, however, there are outlives relationships that are
/// not converted into a region constraint, but rather into one of
/// these "type tests". The distinction is that a type test does not
/// influence the inference result, but instead just examines the
/// values that we ultimately inferred for each region variable and
/// checks that they meet certain extra criteria. If not, an error
/// can be issued.
///
/// One reason for this is that these type tests typically boil down
/// to a check like `'a: 'x` where `'a` is a universally quantified
/// region -- and therefore not one whose value is really meant to be
/// *inferred*, precisely (this is not always the case: one can have a
/// type test like `<Foo as Trait<'?0>>::Bar: 'x`, where `'?0` is an
/// inference variable). Another reason is that these type tests can
/// involve *disjunction* -- that is, they can be satisfied in more
/// than one way.
///
/// For more information about this translation, see
/// `InferCtxt::process_registered_region_obligations` and
/// `InferCtxt::type_must_outlive` in `rustc_infer::infer::InferCtxt`.
#[derive(Clone, Debug)]
pub struct TypeTest<'tcx> {
/// The type `T` that must outlive the region.
pub generic_kind: GenericKind<'tcx>,
/// The region `'x` that the type must outlive.
pub lower_bound: RegionVid,
/// The span to blame.
pub span: Span,
/// A test which, if met by the region `'x`, proves that this type
/// constraint is satisfied.
pub verify_bound: VerifyBound<'tcx>,
}
/// When we have an unmet lifetime constraint, we try to propagate it outward (e.g. to a closure
/// environment). If we can't, it is an error.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
enum RegionRelationCheckResult {
Ok,
Propagated,
Error,
}
#[derive(Clone, PartialEq, Eq, Debug)]
enum Trace<'tcx> {
StartRegion,
FromOutlivesConstraint(OutlivesConstraint<'tcx>),
NotVisited,
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum ExtraConstraintInfo {
PlaceholderFromPredicate(Span),
}
impl<'tcx> RegionInferenceContext<'tcx> {
/// Creates a new region inference context with a total of
/// `num_region_variables` valid inference variables; the first N
/// of those will be constant regions representing the free
/// regions defined in `universal_regions`.
///
/// The `outlives_constraints` and `type_tests` are an initial set
/// of constraints produced by the MIR type check.
pub(crate) fn new(
var_infos: VarInfos,
universal_regions: Rc<UniversalRegions<'tcx>>,
placeholder_indices: Rc<PlaceholderIndices>,
universal_region_relations: Frozen<UniversalRegionRelations<'tcx>>,
outlives_constraints: OutlivesConstraintSet<'tcx>,
member_constraints_in: MemberConstraintSet<'tcx, RegionVid>,
universe_causes: FxHashMap<ty::UniverseIndex, UniverseInfo<'tcx>>,
type_tests: Vec<TypeTest<'tcx>>,
liveness_constraints: LivenessValues<RegionVid>,
elements: &Rc<RegionValueElements>,
) -> Self {
// Create a RegionDefinition for each inference variable.
let definitions: IndexVec<_, _> = var_infos
.iter()
.map(|info| RegionDefinition::new(info.universe, info.origin))
.collect();
let constraints = Frozen::freeze(outlives_constraints);
let constraint_graph = Frozen::freeze(constraints.graph(definitions.len()));
let fr_static = universal_regions.fr_static;
let constraint_sccs = Rc::new(constraints.compute_sccs(&constraint_graph, fr_static));
let mut scc_values =
RegionValues::new(elements, universal_regions.len(), &placeholder_indices);
for region in liveness_constraints.rows() {
let scc = constraint_sccs.scc(region);
scc_values.merge_liveness(scc, region, &liveness_constraints);
}
let scc_universes = Self::compute_scc_universes(&constraint_sccs, &definitions);
let scc_representatives = Self::compute_scc_representatives(&constraint_sccs, &definitions);
let member_constraints =
Rc::new(member_constraints_in.into_mapped(|r| constraint_sccs.scc(r)));
let mut result = Self {
var_infos,
definitions,
liveness_constraints,
constraints,
constraint_graph,
constraint_sccs,
rev_scc_graph: None,
member_constraints,
member_constraints_applied: Vec::new(),
universe_causes,
scc_universes,
scc_representatives,
scc_values,
type_tests,
universal_regions,
universal_region_relations,
};
result.init_free_and_bound_regions();
result
}
/// Each SCC is the combination of many region variables which
/// have been equated. Therefore, we can associate a universe with
/// each SCC which is minimum of all the universes of its
/// constituent regions -- this is because whatever value the SCC
/// takes on must be a value that each of the regions within the
/// SCC could have as well. This implies that the SCC must have
/// the minimum, or narrowest, universe.
fn compute_scc_universes(
constraint_sccs: &Sccs<RegionVid, ConstraintSccIndex>,
definitions: &IndexVec<RegionVid, RegionDefinition<'tcx>>,
) -> IndexVec<ConstraintSccIndex, ty::UniverseIndex> {
let num_sccs = constraint_sccs.num_sccs();
let mut scc_universes = IndexVec::from_elem_n(ty::UniverseIndex::MAX, num_sccs);
debug!("compute_scc_universes()");
// For each region R in universe U, ensure that the universe for the SCC
// that contains R is "no bigger" than U. This effectively sets the universe
// for each SCC to be the minimum of the regions within.
for (region_vid, region_definition) in definitions.iter_enumerated() {
let scc = constraint_sccs.scc(region_vid);
let scc_universe = &mut scc_universes[scc];
let scc_min = std::cmp::min(region_definition.universe, *scc_universe);
if scc_min != *scc_universe {
*scc_universe = scc_min;
debug!(
"compute_scc_universes: lowered universe of {scc:?} to {scc_min:?} \
because it contains {region_vid:?} in {region_universe:?}",
scc = scc,
scc_min = scc_min,
region_vid = region_vid,
region_universe = region_definition.universe,
);
}
}
// Walk each SCC `A` and `B` such that `A: B`
// and ensure that universe(A) can see universe(B).
//
// This serves to enforce the 'empty/placeholder' hierarchy
// (described in more detail on `RegionKind`):
//
// ```
// static -----+
// | |
// empty(U0) placeholder(U1)
// | /
// empty(U1)
// ```
//
// In particular, imagine we have variables R0 in U0 and R1
// created in U1, and constraints like this;
//
// ```
// R1: !1 // R1 outlives the placeholder in U1
// R1: R0 // R1 outlives R0
// ```
//
// Here, we wish for R1 to be `'static`, because it
// cannot outlive `placeholder(U1)` and `empty(U0)` any other way.
//
// Thanks to this loop, what happens is that the `R1: R0`
// constraint lowers the universe of `R1` to `U0`, which in turn
// means that the `R1: !1` constraint will (later) cause
// `R1` to become `'static`.
for scc_a in constraint_sccs.all_sccs() {
for &scc_b in constraint_sccs.successors(scc_a) {
let scc_universe_a = scc_universes[scc_a];
let scc_universe_b = scc_universes[scc_b];
let scc_universe_min = std::cmp::min(scc_universe_a, scc_universe_b);
if scc_universe_a != scc_universe_min {
scc_universes[scc_a] = scc_universe_min;
debug!(
"compute_scc_universes: lowered universe of {scc_a:?} to {scc_universe_min:?} \
because {scc_a:?}: {scc_b:?} and {scc_b:?} is in universe {scc_universe_b:?}",
scc_a = scc_a,
scc_b = scc_b,
scc_universe_min = scc_universe_min,
scc_universe_b = scc_universe_b
);
}
}
}
debug!("compute_scc_universes: scc_universe = {:#?}", scc_universes);
scc_universes
}
/// For each SCC, we compute a unique `RegionVid` (in fact, the
/// minimal one that belongs to the SCC). See
/// `scc_representatives` field of `RegionInferenceContext` for
/// more details.
fn compute_scc_representatives(
constraints_scc: &Sccs<RegionVid, ConstraintSccIndex>,
definitions: &IndexVec<RegionVid, RegionDefinition<'tcx>>,
) -> IndexVec<ConstraintSccIndex, ty::RegionVid> {
let num_sccs = constraints_scc.num_sccs();
let next_region_vid = definitions.next_index();
let mut scc_representatives = IndexVec::from_elem_n(next_region_vid, num_sccs);
for region_vid in definitions.indices() {
let scc = constraints_scc.scc(region_vid);
let prev_min = scc_representatives[scc];
scc_representatives[scc] = region_vid.min(prev_min);
}
scc_representatives
}
/// Initializes the region variables for each universally
/// quantified region (lifetime parameter). The first N variables
/// always correspond to the regions appearing in the function
/// signature (both named and anonymous) and where-clauses. This
/// function iterates over those regions and initializes them with
/// minimum values.
///
/// For example:
/// ```
/// fn foo<'a, 'b>( /* ... */ ) where 'a: 'b { /* ... */ }
/// ```
/// would initialize two variables like so:
/// ```ignore (illustrative)
/// R0 = { CFG, R0 } // 'a
/// R1 = { CFG, R0, R1 } // 'b
/// ```
/// Here, R0 represents `'a`, and it contains (a) the entire CFG
/// and (b) any universally quantified regions that it outlives,
/// which in this case is just itself. R1 (`'b`) in contrast also
/// outlives `'a` and hence contains R0 and R1.
fn init_free_and_bound_regions(&mut self) {
// Update the names (if any)
for (external_name, variable) in self.universal_regions.named_universal_regions() {
debug!(
"init_universal_regions: region {:?} has external name {:?}",
variable, external_name
);
self.definitions[variable].external_name = Some(external_name);
}
for variable in self.definitions.indices() {
let scc = self.constraint_sccs.scc(variable);
match self.definitions[variable].origin {
NllRegionVariableOrigin::FreeRegion => {
// For each free, universally quantified region X:
// Add all nodes in the CFG to liveness constraints
self.liveness_constraints.add_all_points(variable);
self.scc_values.add_all_points(scc);
// Add `end(X)` into the set for X.
self.scc_values.add_element(scc, variable);
}
NllRegionVariableOrigin::Placeholder(placeholder) => {
// Each placeholder region is only visible from
// its universe `ui` and its extensions. So we
// can't just add it into `scc` unless the
// universe of the scc can name this region.
let scc_universe = self.scc_universes[scc];
if scc_universe.can_name(placeholder.universe) {
self.scc_values.add_element(scc, placeholder);
} else {
debug!(
"init_free_and_bound_regions: placeholder {:?} is \
not compatible with universe {:?} of its SCC {:?}",
placeholder, scc_universe, scc,
);
self.add_incompatible_universe(scc);
}
}
NllRegionVariableOrigin::Existential { .. } => {
// For existential, regions, nothing to do.
}
}
}
}
/// Returns an iterator over all the region indices.
pub fn regions(&self) -> impl Iterator<Item = RegionVid> + 'tcx {
self.definitions.indices()
}
/// Given a universal region in scope on the MIR, returns the
/// corresponding index.
///
/// (Panics if `r` is not a registered universal region.)
pub fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
self.universal_regions.to_region_vid(r)
}
/// Adds annotations for `#[rustc_regions]`; see `UniversalRegions::annotate`.
pub(crate) fn annotate(&self, tcx: TyCtxt<'tcx>, err: &mut Diagnostic) {
self.universal_regions.annotate(tcx, err)
}
/// Returns `true` if the region `r` contains the point `p`.
///
/// Panics if called before `solve()` executes,
pub(crate) fn region_contains(&self, r: impl ToRegionVid, p: impl ToElementIndex) -> bool {
let scc = self.constraint_sccs.scc(r.to_region_vid());
self.scc_values.contains(scc, p)
}
/// Returns access to the value of `r` for debugging purposes.
pub(crate) fn region_value_str(&self, r: RegionVid) -> String {
let scc = self.constraint_sccs.scc(r.to_region_vid());
self.scc_values.region_value_str(scc)
}
/// Returns access to the value of `r` for debugging purposes.
pub(crate) fn region_universe(&self, r: RegionVid) -> ty::UniverseIndex {
let scc = self.constraint_sccs.scc(r.to_region_vid());
self.scc_universes[scc]
}
/// Once region solving has completed, this function will return
/// the member constraints that were applied to the value of a given
/// region `r`. See `AppliedMemberConstraint`.
pub(crate) fn applied_member_constraints(
&self,
r: impl ToRegionVid,
) -> &[AppliedMemberConstraint] {
let scc = self.constraint_sccs.scc(r.to_region_vid());
binary_search_util::binary_search_slice(
&self.member_constraints_applied,
|applied| applied.member_region_scc,
&scc,
)
}
/// Performs region inference and report errors if we see any
/// unsatisfiable constraints. If this is a closure, returns the
/// region requirements to propagate to our creator, if any.
#[instrument(skip(self, infcx, body, polonius_output), level = "debug")]
pub(super) fn solve(
&mut self,
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
body: &Body<'tcx>,
polonius_output: Option<Rc<PoloniusOutput>>,
) -> (Option<ClosureRegionRequirements<'tcx>>, RegionErrors<'tcx>) {
let mir_def_id = body.source.def_id();
self.propagate_constraints(body);
let mut errors_buffer = RegionErrors::new();
// If this is a closure, we can propagate unsatisfied
// `outlives_requirements` to our creator, so create a vector
// to store those. Otherwise, we'll pass in `None` to the
// functions below, which will trigger them to report errors
// eagerly.
let mut outlives_requirements = infcx.tcx.is_typeck_child(mir_def_id).then(Vec::new);
self.check_type_tests(
infcx,
param_env,
body,
outlives_requirements.as_mut(),
&mut errors_buffer,
);
// In Polonius mode, the errors about missing universal region relations are in the output
// and need to be emitted or propagated. Otherwise, we need to check whether the
// constraints were too strong, and if so, emit or propagate those errors.
if infcx.tcx.sess.opts.unstable_opts.polonius {
self.check_polonius_subset_errors(
outlives_requirements.as_mut(),
&mut errors_buffer,
polonius_output.expect("Polonius output is unavailable despite `-Z polonius`"),
);
} else {
self.check_universal_regions(outlives_requirements.as_mut(), &mut errors_buffer);
}
if errors_buffer.is_empty() {
self.check_member_constraints(infcx, &mut errors_buffer);
}
let outlives_requirements = outlives_requirements.unwrap_or_default();
if outlives_requirements.is_empty() {
(None, errors_buffer)
} else {
let num_external_vids = self.universal_regions.num_global_and_external_regions();
(
Some(ClosureRegionRequirements { num_external_vids, outlives_requirements }),
errors_buffer,
)
}
}
/// Propagate the region constraints: this will grow the values
/// for each region variable until all the constraints are
/// satisfied. Note that some values may grow **too** large to be
/// feasible, but we check this later.
#[instrument(skip(self, _body), level = "debug")]
fn propagate_constraints(&mut self, _body: &Body<'tcx>) {
debug!("constraints={:#?}", {
let mut constraints: Vec<_> = self.constraints.outlives().iter().collect();
constraints.sort_by_key(|c| (c.sup, c.sub));
constraints
.into_iter()
.map(|c| (c, self.constraint_sccs.scc(c.sup), self.constraint_sccs.scc(c.sub)))
.collect::<Vec<_>>()
});
// To propagate constraints, we walk the DAG induced by the
// SCC. For each SCC, we visit its successors and compute
// their values, then we union all those values to get our
// own.
let constraint_sccs = self.constraint_sccs.clone();
for scc in constraint_sccs.all_sccs() {
self.compute_value_for_scc(scc);
}
// Sort the applied member constraints so we can binary search
// through them later.
self.member_constraints_applied.sort_by_key(|applied| applied.member_region_scc);
}
/// Computes the value of the SCC `scc_a`, which has not yet been
/// computed, by unioning the values of its successors.
/// Assumes that all successors have been computed already
/// (which is assured by iterating over SCCs in dependency order).
#[instrument(skip(self), level = "debug")]
fn compute_value_for_scc(&mut self, scc_a: ConstraintSccIndex) {
let constraint_sccs = self.constraint_sccs.clone();
// Walk each SCC `B` such that `A: B`...
for &scc_b in constraint_sccs.successors(scc_a) {
debug!(?scc_b);
// ...and add elements from `B` into `A`. One complication
// arises because of universes: If `B` contains something
// that `A` cannot name, then `A` can only contain `B` if
// it outlives static.
if self.universe_compatible(scc_b, scc_a) {
// `A` can name everything that is in `B`, so just
// merge the bits.
self.scc_values.add_region(scc_a, scc_b);
} else {
self.add_incompatible_universe(scc_a);
}
}
// Now take member constraints into account.
let member_constraints = self.member_constraints.clone();
for m_c_i in member_constraints.indices(scc_a) {
self.apply_member_constraint(scc_a, m_c_i, member_constraints.choice_regions(m_c_i));
}
debug!(value = ?self.scc_values.region_value_str(scc_a));
}
/// Invoked for each `R0 member of [R1..Rn]` constraint.
///
/// `scc` is the SCC containing R0, and `choice_regions` are the
/// `R1..Rn` regions -- they are always known to be universal
/// regions (and if that's not true, we just don't attempt to
/// enforce the constraint).
///
/// The current value of `scc` at the time the method is invoked
/// is considered a *lower bound*. If possible, we will modify
/// the constraint to set it equal to one of the option regions.
/// If we make any changes, returns true, else false.
#[instrument(skip(self, member_constraint_index), level = "debug")]
fn apply_member_constraint(
&mut self,
scc: ConstraintSccIndex,
member_constraint_index: NllMemberConstraintIndex,
choice_regions: &[ty::RegionVid],
) -> bool {
// Create a mutable vector of the options. We'll try to winnow
// them down.
let mut choice_regions: Vec<ty::RegionVid> = choice_regions.to_vec();
// Convert to the SCC representative: sometimes we have inference
// variables in the member constraint that wind up equated with
// universal regions. The scc representative is the minimal numbered
// one from the corresponding scc so it will be the universal region
// if one exists.
for c_r in &mut choice_regions {
let scc = self.constraint_sccs.scc(*c_r);
*c_r = self.scc_representatives[scc];
}
// The 'member region' in a member constraint is part of the
// hidden type, which must be in the root universe. Therefore,
// it cannot have any placeholders in its value.
assert!(self.scc_universes[scc] == ty::UniverseIndex::ROOT);
debug_assert!(
self.scc_values.placeholders_contained_in(scc).next().is_none(),
"scc {:?} in a member constraint has placeholder value: {:?}",
scc,
self.scc_values.region_value_str(scc),
);
// The existing value for `scc` is a lower-bound. This will
// consist of some set `{P} + {LB}` of points `{P}` and
// lower-bound free regions `{LB}`. As each choice region `O`
// is a free region, it will outlive the points. But we can
// only consider the option `O` if `O: LB`.
choice_regions.retain(|&o_r| {
self.scc_values
.universal_regions_outlived_by(scc)
.all(|lb| self.universal_region_relations.outlives(o_r, lb))
});
debug!(?choice_regions, "after lb");
// Now find all the *upper bounds* -- that is, each UB is a
// free region that must outlive the member region `R0` (`UB:
// R0`). Therefore, we need only keep an option `O` if `UB: O`
// for all UB.
let rev_scc_graph = self.reverse_scc_graph();
let universal_region_relations = &self.universal_region_relations;
for ub in rev_scc_graph.upper_bounds(scc) {
debug!(?ub);
choice_regions.retain(|&o_r| universal_region_relations.outlives(ub, o_r));
}
debug!(?choice_regions, "after ub");
// If we ruled everything out, we're done.
if choice_regions.is_empty() {
return false;
}
// Otherwise, we need to find the minimum remaining choice, if
// any, and take that.
debug!("choice_regions remaining are {:#?}", choice_regions);
let Some(&min_choice) = choice_regions.iter().find(|&r1| {
choice_regions.iter().all(|&r2| {
self.universal_region_relations.outlives(r2, *r1)
})
}) else {
debug!("no choice region outlived by all others");
return false;
};
let min_choice_scc = self.constraint_sccs.scc(min_choice);
debug!(?min_choice, ?min_choice_scc);
if self.scc_values.add_region(scc, min_choice_scc) {
self.member_constraints_applied.push(AppliedMemberConstraint {
member_region_scc: scc,
min_choice,
member_constraint_index,
});
true
} else {
false
}
}
/// Returns `true` if all the elements in the value of `scc_b` are nameable
/// in `scc_a`. Used during constraint propagation, and only once
/// the value of `scc_b` has been computed.
fn universe_compatible(&self, scc_b: ConstraintSccIndex, scc_a: ConstraintSccIndex) -> bool {
let universe_a = self.scc_universes[scc_a];
// Quick check: if scc_b's declared universe is a subset of
// scc_a's declared universe (typically, both are ROOT), then
// it cannot contain any problematic universe elements.
if universe_a.can_name(self.scc_universes[scc_b]) {
return true;
}
// Otherwise, we have to iterate over the universe elements in
// B's value, and check whether all of them are nameable
// from universe_a
self.scc_values.placeholders_contained_in(scc_b).all(|p| universe_a.can_name(p.universe))
}
/// Extend `scc` so that it can outlive some placeholder region
/// from a universe it can't name; at present, the only way for
/// this to be true is if `scc` outlives `'static`. This is
/// actually stricter than necessary: ideally, we'd support bounds
/// like `for<'a: 'b`>` that might then allow us to approximate
/// `'a` with `'b` and not `'static`. But it will have to do for
/// now.
fn add_incompatible_universe(&mut self, scc: ConstraintSccIndex) {
debug!("add_incompatible_universe(scc={:?})", scc);
let fr_static = self.universal_regions.fr_static;
self.scc_values.add_all_points(scc);
self.scc_values.add_element(scc, fr_static);
}
/// Once regions have been propagated, this method is used to see
/// whether the "type tests" produced by typeck were satisfied;
/// type tests encode type-outlives relationships like `T:
/// 'a`. See `TypeTest` for more details.
fn check_type_tests(
&self,
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
body: &Body<'tcx>,
mut propagated_outlives_requirements: Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
errors_buffer: &mut RegionErrors<'tcx>,
) {
let tcx = infcx.tcx;
// Sometimes we register equivalent type-tests that would
// result in basically the exact same error being reported to
// the user. Avoid that.
let mut deduplicate_errors = FxHashSet::default();
for type_test in &self.type_tests {
debug!("check_type_test: {:?}", type_test);
let generic_ty = type_test.generic_kind.to_ty(tcx);
if self.eval_verify_bound(
infcx,
param_env,
body,
generic_ty,
type_test.lower_bound,
&type_test.verify_bound,
) {
continue;
}
if let Some(propagated_outlives_requirements) = &mut propagated_outlives_requirements {
if self.try_promote_type_test(
infcx,
param_env,
body,
type_test,
propagated_outlives_requirements,
) {
continue;
}
}
// Type-test failed. Report the error.
let erased_generic_kind = infcx.tcx.erase_regions(type_test.generic_kind);
// Skip duplicate-ish errors.
if deduplicate_errors.insert((
erased_generic_kind,
type_test.lower_bound,
type_test.span,
)) {
debug!(
"check_type_test: reporting error for erased_generic_kind={:?}, \
lower_bound_region={:?}, \
type_test.span={:?}",
erased_generic_kind, type_test.lower_bound, type_test.span,
);
errors_buffer.push(RegionErrorKind::TypeTestError { type_test: type_test.clone() });
}
}
}
/// Invoked when we have some type-test (e.g., `T: 'X`) that we cannot
/// prove to be satisfied. If this is a closure, we will attempt to
/// "promote" this type-test into our `ClosureRegionRequirements` and
/// hence pass it up the creator. To do this, we have to phrase the
/// type-test in terms of external free regions, as local free
/// regions are not nameable by the closure's creator.
///
/// Promotion works as follows: we first check that the type `T`
/// contains only regions that the creator knows about. If this is
/// true, then -- as a consequence -- we know that all regions in
/// the type `T` are free regions that outlive the closure body. If
/// false, then promotion fails.
///
/// Once we've promoted T, we have to "promote" `'X` to some region
/// that is "external" to the closure. Generally speaking, a region
/// may be the union of some points in the closure body as well as
/// various free lifetimes. We can ignore the points in the closure
/// body: if the type T can be expressed in terms of external regions,
/// we know it outlives the points in the closure body. That
/// just leaves the free regions.
///
/// The idea then is to lower the `T: 'X` constraint into multiple
/// bounds -- e.g., if `'X` is the union of two free lifetimes,
/// `'1` and `'2`, then we would create `T: '1` and `T: '2`.
#[instrument(level = "debug", skip(self, infcx, propagated_outlives_requirements))]
fn try_promote_type_test(
&self,
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
body: &Body<'tcx>,
type_test: &TypeTest<'tcx>,
propagated_outlives_requirements: &mut Vec<ClosureOutlivesRequirement<'tcx>>,
) -> bool {
let tcx = infcx.tcx;
let TypeTest { generic_kind, lower_bound, span: _, verify_bound: _ } = type_test;
let generic_ty = generic_kind.to_ty(tcx);
let Some(subject) = self.try_promote_type_test_subject(infcx, generic_ty) else {
return false;
};
debug!("subject = {:?}", subject);
let r_scc = self.constraint_sccs.scc(*lower_bound);
debug!(
"lower_bound = {:?} r_scc={:?} universe={:?}",
lower_bound, r_scc, self.scc_universes[r_scc]
);
// If the type test requires that `T: 'a` where `'a` is a
// placeholder from another universe, that effectively requires
// `T: 'static`, so we have to propagate that requirement.
//
// It doesn't matter *what* universe because the promoted `T` will
// always be in the root universe.
if let Some(p) = self.scc_values.placeholders_contained_in(r_scc).next() {
debug!("encountered placeholder in higher universe: {:?}, requiring 'static", p);
let static_r = self.universal_regions.fr_static;
propagated_outlives_requirements.push(ClosureOutlivesRequirement {
subject,
outlived_free_region: static_r,
blame_span: type_test.span,
category: ConstraintCategory::Boring,
});
// we can return here -- the code below might push add'l constraints
// but they would all be weaker than this one.
return true;
}
// For each region outlived by lower_bound find a non-local,
// universal region (it may be the same region) and add it to
// `ClosureOutlivesRequirement`.
for ur in self.scc_values.universal_regions_outlived_by(r_scc) {
debug!("universal_region_outlived_by ur={:?}", ur);
// Check whether we can already prove that the "subject" outlives `ur`.
// If so, we don't have to propagate this requirement to our caller.
//
// To continue the example from the function, if we are trying to promote
// a requirement that `T: 'X`, and we know that `'X = '1 + '2` (i.e., the union
// `'1` and `'2`), then in this loop `ur` will be `'1` (and `'2`). So here
// we check whether `T: '1` is something we *can* prove. If so, no need
// to propagate that requirement.
//
// This is needed because -- particularly in the case
// where `ur` is a local bound -- we are sometimes in a
// position to prove things that our caller cannot. See
// #53570 for an example.
if self.eval_verify_bound(
infcx,
param_env,
body,
generic_ty,
ur,
&type_test.verify_bound,
) {
continue;
}
let non_local_ub = self.universal_region_relations.non_local_upper_bounds(ur);
debug!("try_promote_type_test: non_local_ub={:?}", non_local_ub);
// This is slightly too conservative. To show T: '1, given `'2: '1`
// and `'3: '1` we only need to prove that T: '2 *or* T: '3, but to
// avoid potential non-determinism we approximate this by requiring
// T: '1 and T: '2.
for upper_bound in non_local_ub {
debug_assert!(self.universal_regions.is_universal_region(upper_bound));
debug_assert!(!self.universal_regions.is_local_free_region(upper_bound));
let requirement = ClosureOutlivesRequirement {
subject,
outlived_free_region: upper_bound,
blame_span: type_test.span,
category: ConstraintCategory::Boring,
};
debug!("try_promote_type_test: pushing {:#?}", requirement);
propagated_outlives_requirements.push(requirement);
}
}
true
}
/// When we promote a type test `T: 'r`, we have to convert the
/// type `T` into something we can store in a query result (so
/// something allocated for `'tcx`). This is problematic if `ty`
/// contains regions. During the course of NLL region checking, we
/// will have replaced all of those regions with fresh inference
/// variables. To create a test subject, we want to replace those
/// inference variables with some region from the closure
/// signature -- this is not always possible, so this is a
/// fallible process. Presuming we do find a suitable region, we
/// will use it's *external name*, which will be a `RegionKind`
/// variant that can be used in query responses such as
/// `ReEarlyBound`.
#[instrument(level = "debug", skip(self, infcx))]
fn try_promote_type_test_subject(
&self,
infcx: &InferCtxt<'tcx>,
ty: Ty<'tcx>,
) -> Option<ClosureOutlivesSubject<'tcx>> {
let tcx = infcx.tcx;
let ty = tcx.fold_regions(ty, |r, _depth| {
let region_vid = self.to_region_vid(r);
// The challenge if this. We have some region variable `r`
// whose value is a set of CFG points and universal
// regions. We want to find if that set is *equivalent* to
// any of the named regions found in the closure.
//
// To do so, we compute the
// `non_local_universal_upper_bound`. This will be a
// non-local, universal region that is greater than `r`.
// However, it might not be *contained* within `r`, so
// then we further check whether this bound is contained
// in `r`. If so, we can say that `r` is equivalent to the
// bound.
//
// Let's work through a few examples. For these, imagine
// that we have 3 non-local regions (I'll denote them as
// `'static`, `'a`, and `'b`, though of course in the code
// they would be represented with indices) where:
//
// - `'static: 'a`
// - `'static: 'b`
//
// First, let's assume that `r` is some existential
// variable with an inferred value `{'a, 'static}` (plus
// some CFG nodes). In this case, the non-local upper
// bound is `'static`, since that outlives `'a`. `'static`
// is also a member of `r` and hence we consider `r`
// equivalent to `'static` (and replace it with
// `'static`).
//
// Now let's consider the inferred value `{'a, 'b}`. This
// means `r` is effectively `'a | 'b`. I'm not sure if
// this can come about, actually, but assuming it did, we
// would get a non-local upper bound of `'static`. Since
// `'static` is not contained in `r`, we would fail to
// find an equivalent.
let upper_bound = self.non_local_universal_upper_bound(region_vid);
if self.region_contains(region_vid, upper_bound) {
self.definitions[upper_bound].external_name.unwrap_or(r)
} else {
// In the case of a failure, use a `ReVar` result. This will
// cause the `needs_infer` later on to return `None`.
r
}
});
debug!("try_promote_type_test_subject: folded ty = {:?}", ty);
// `needs_infer` will only be true if we failed to promote some region.
if ty.needs_infer() {
return None;
}
Some(ClosureOutlivesSubject::Ty(ty))
}
/// Given some universal or existential region `r`, finds a
/// non-local, universal region `r+` that outlives `r` at entry to (and
/// exit from) the closure. In the worst case, this will be
/// `'static`.
///
/// This is used for two purposes. First, if we are propagated
/// some requirement `T: r`, we can use this method to enlarge `r`
/// to something we can encode for our creator (which only knows
/// about non-local, universal regions). It is also used when
/// encoding `T` as part of `try_promote_type_test_subject` (see
/// that fn for details).
///
/// This is based on the result `'y` of `universal_upper_bound`,
/// except that it converts further takes the non-local upper
/// bound of `'y`, so that the final result is non-local.
fn non_local_universal_upper_bound(&self, r: RegionVid) -> RegionVid {
debug!("non_local_universal_upper_bound(r={:?}={})", r, self.region_value_str(r));
let lub = self.universal_upper_bound(r);
// Grow further to get smallest universal region known to
// creator.
let non_local_lub = self.universal_region_relations.non_local_upper_bound(lub);
debug!("non_local_universal_upper_bound: non_local_lub={:?}", non_local_lub);
non_local_lub
}
/// Returns a universally quantified region that outlives the
/// value of `r` (`r` may be existentially or universally
/// quantified).
///
/// Since `r` is (potentially) an existential region, it has some
/// value which may include (a) any number of points in the CFG
/// and (b) any number of `end('x)` elements of universally
/// quantified regions. To convert this into a single universal
/// region we do as follows:
///
/// - Ignore the CFG points in `'r`. All universally quantified regions
/// include the CFG anyhow.
/// - For each `end('x)` element in `'r`, compute the mutual LUB, yielding
/// a result `'y`.
#[instrument(skip(self), level = "debug", ret)]
pub(crate) fn universal_upper_bound(&self, r: RegionVid) -> RegionVid {
debug!(r = %self.region_value_str(r));
// Find the smallest universal region that contains all other
// universal regions within `region`.
let mut lub = self.universal_regions.fr_fn_body;
let r_scc = self.constraint_sccs.scc(r);
for ur in self.scc_values.universal_regions_outlived_by(r_scc) {
lub = self.universal_region_relations.postdom_upper_bound(lub, ur);
}
lub
}
/// Like `universal_upper_bound`, but returns an approximation more suitable
/// for diagnostics. If `r` contains multiple disjoint universal regions
/// (e.g. 'a and 'b in `fn foo<'a, 'b> { ... }`, we pick the lower-numbered region.
/// This corresponds to picking named regions over unnamed regions
/// (e.g. picking early-bound regions over a closure late-bound region).
///
/// This means that the returned value may not be a true upper bound, since
/// only 'static is known to outlive disjoint universal regions.
/// Therefore, this method should only be used in diagnostic code,
/// where displaying *some* named universal region is better than
/// falling back to 'static.
#[instrument(level = "debug", skip(self))]
pub(crate) fn approx_universal_upper_bound(&self, r: RegionVid) -> RegionVid {
debug!("{}", self.region_value_str(r));
// Find the smallest universal region that contains all other
// universal regions within `region`.
let mut lub = self.universal_regions.fr_fn_body;
let r_scc = self.constraint_sccs.scc(r);
let static_r = self.universal_regions.fr_static;
for ur in self.scc_values.universal_regions_outlived_by(r_scc) {
let new_lub = self.universal_region_relations.postdom_upper_bound(lub, ur);
debug!(?ur, ?lub, ?new_lub);
// The upper bound of two non-static regions is static: this
// means we know nothing about the relationship between these
// two regions. Pick a 'better' one to use when constructing
// a diagnostic
if ur != static_r && lub != static_r && new_lub == static_r {
// Prefer the region with an `external_name` - this
// indicates that the region is early-bound, so working with
// it can produce a nicer error.
if self.region_definition(ur).external_name.is_some() {
lub = ur;
} else if self.region_definition(lub).external_name.is_some() {
// Leave lub unchanged
} else {
// If we get here, we don't have any reason to prefer
// one region over the other. Just pick the
// one with the lower index for now.
lub = std::cmp::min(ur, lub);
}
} else {
lub = new_lub;
}
}
debug!(?r, ?lub);
lub
}
/// Tests if `test` is true when applied to `lower_bound` at
/// `point`.
fn eval_verify_bound(
&self,
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
body: &Body<'tcx>,
generic_ty: Ty<'tcx>,
lower_bound: RegionVid,
verify_bound: &VerifyBound<'tcx>,
) -> bool {
debug!("eval_verify_bound(lower_bound={:?}, verify_bound={:?})", lower_bound, verify_bound);
match verify_bound {
VerifyBound::IfEq(verify_if_eq_b) => {
self.eval_if_eq(infcx, param_env, generic_ty, lower_bound, *verify_if_eq_b)
}
VerifyBound::IsEmpty => {
let lower_bound_scc = self.constraint_sccs.scc(lower_bound);
self.scc_values.elements_contained_in(lower_bound_scc).next().is_none()
}
VerifyBound::OutlivedBy(r) => {
let r_vid = self.to_region_vid(*r);
self.eval_outlives(r_vid, lower_bound)
}
VerifyBound::AnyBound(verify_bounds) => verify_bounds.iter().any(|verify_bound| {
self.eval_verify_bound(
infcx,
param_env,
body,
generic_ty,
lower_bound,
verify_bound,
)
}),
VerifyBound::AllBounds(verify_bounds) => verify_bounds.iter().all(|verify_bound| {
self.eval_verify_bound(
infcx,
param_env,
body,
generic_ty,
lower_bound,
verify_bound,
)
}),
}
}
fn eval_if_eq(
&self,
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
generic_ty: Ty<'tcx>,
lower_bound: RegionVid,
verify_if_eq_b: ty::Binder<'tcx, VerifyIfEq<'tcx>>,
) -> bool {
let generic_ty = self.normalize_to_scc_representatives(infcx.tcx, generic_ty);
let verify_if_eq_b = self.normalize_to_scc_representatives(infcx.tcx, verify_if_eq_b);
match test_type_match::extract_verify_if_eq(
infcx.tcx,
param_env,
&verify_if_eq_b,
generic_ty,
) {
Some(r) => {
let r_vid = self.to_region_vid(r);
self.eval_outlives(r_vid, lower_bound)
}
None => false,
}
}
/// This is a conservative normalization procedure. It takes every
/// free region in `value` and replaces it with the
/// "representative" of its SCC (see `scc_representatives` field).
/// We are guaranteed that if two values normalize to the same
/// thing, then they are equal; this is a conservative check in
/// that they could still be equal even if they normalize to
/// different results. (For example, there might be two regions
/// with the same value that are not in the same SCC).
///
/// N.B., this is not an ideal approach and I would like to revisit
/// it. However, it works pretty well in practice. In particular,
/// this is needed to deal with projection outlives bounds like
///
/// ```text
/// <T as Foo<'0>>::Item: '1
/// ```
///
/// In particular, this routine winds up being important when
/// there are bounds like `where <T as Foo<'a>>::Item: 'b` in the
/// environment. In this case, if we can show that `'0 == 'a`,
/// and that `'b: '1`, then we know that the clause is
/// satisfied. In such cases, particularly due to limitations of
/// the trait solver =), we usually wind up with a where-clause like
/// `T: Foo<'a>` in scope, which thus forces `'0 == 'a` to be added as
/// a constraint, and thus ensures that they are in the same SCC.
///
/// So why can't we do a more correct routine? Well, we could
/// *almost* use the `relate_tys` code, but the way it is
/// currently setup it creates inference variables to deal with
/// higher-ranked things and so forth, and right now the inference
/// context is not permitted to make more inference variables. So
/// we use this kind of hacky solution.
fn normalize_to_scc_representatives<T>(&self, tcx: TyCtxt<'tcx>, value: T) -> T
where
T: TypeFoldable<'tcx>,
{
tcx.fold_regions(value, |r, _db| {
let vid = self.to_region_vid(r);
let scc = self.constraint_sccs.scc(vid);
let repr = self.scc_representatives[scc];
tcx.mk_region(ty::ReVar(repr))
})
}
// Evaluate whether `sup_region == sub_region`.
fn eval_equal(&self, r1: RegionVid, r2: RegionVid) -> bool {
self.eval_outlives(r1, r2) && self.eval_outlives(r2, r1)
}
// Evaluate whether `sup_region: sub_region`.
#[instrument(skip(self), level = "debug", ret)]
fn eval_outlives(&self, sup_region: RegionVid, sub_region: RegionVid) -> bool {
debug!(
"sup_region's value = {:?} universal={:?}",
self.region_value_str(sup_region),
self.universal_regions.is_universal_region(sup_region),
);
debug!(
"sub_region's value = {:?} universal={:?}",
self.region_value_str(sub_region),
self.universal_regions.is_universal_region(sub_region),
);
let sub_region_scc = self.constraint_sccs.scc(sub_region);
let sup_region_scc = self.constraint_sccs.scc(sup_region);
// If we are checking that `'sup: 'sub`, and `'sub` contains
// some placeholder that `'sup` cannot name, then this is only
// true if `'sup` outlives static.
if !self.universe_compatible(sub_region_scc, sup_region_scc) {
debug!(
"sub universe `{sub_region_scc:?}` is not nameable \
by super `{sup_region_scc:?}`, promoting to static",
);
return self.eval_outlives(sup_region, self.universal_regions.fr_static);
}
// Both the `sub_region` and `sup_region` consist of the union
// of some number of universal regions (along with the union
// of various points in the CFG; ignore those points for
// now). Therefore, the sup-region outlives the sub-region if,
// for each universal region R1 in the sub-region, there
// exists some region R2 in the sup-region that outlives R1.
let universal_outlives =
self.scc_values.universal_regions_outlived_by(sub_region_scc).all(|r1| {
self.scc_values
.universal_regions_outlived_by(sup_region_scc)
.any(|r2| self.universal_region_relations.outlives(r2, r1))
});
if !universal_outlives {
debug!("sub region contains a universal region not present in super");
return false;
}
// Now we have to compare all the points in the sub region and make
// sure they exist in the sup region.
if self.universal_regions.is_universal_region(sup_region) {
// Micro-opt: universal regions contain all points.
debug!("super is universal and hence contains all points");
return true;
}
debug!("comparison between points in sup/sub");
self.scc_values.contains_points(sup_region_scc, sub_region_scc)
}
/// Once regions have been propagated, this method is used to see
/// whether any of the constraints were too strong. In particular,
/// we want to check for a case where a universally quantified
/// region exceeded its bounds. Consider:
/// ```compile_fail
/// fn foo<'a, 'b>(x: &'a u32) -> &'b u32 { x }
/// ```
/// In this case, returning `x` requires `&'a u32 <: &'b u32`
/// and hence we establish (transitively) a constraint that
/// `'a: 'b`. The `propagate_constraints` code above will
/// therefore add `end('a)` into the region for `'b` -- but we
/// have no evidence that `'b` outlives `'a`, so we want to report
/// an error.
///
/// If `propagated_outlives_requirements` is `Some`, then we will
/// push unsatisfied obligations into there. Otherwise, we'll
/// report them as errors.
fn check_universal_regions(
&self,
mut propagated_outlives_requirements: Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
errors_buffer: &mut RegionErrors<'tcx>,
) {
for (fr, fr_definition) in self.definitions.iter_enumerated() {
match fr_definition.origin {
NllRegionVariableOrigin::FreeRegion => {
// Go through each of the universal regions `fr` and check that
// they did not grow too large, accumulating any requirements
// for our caller into the `outlives_requirements` vector.
self.check_universal_region(
fr,
&mut propagated_outlives_requirements,
errors_buffer,
);
}
NllRegionVariableOrigin::Placeholder(placeholder) => {
self.check_bound_universal_region(fr, placeholder, errors_buffer);
}
NllRegionVariableOrigin::Existential { .. } => {
// nothing to check here
}
}
}
}
/// Checks if Polonius has found any unexpected free region relations.
///
/// In Polonius terms, a "subset error" (or "illegal subset relation error") is the equivalent
/// of NLL's "checking if any region constraints were too strong": a placeholder origin `'a`
/// was unexpectedly found to be a subset of another placeholder origin `'b`, and means in NLL
/// terms that the "longer free region" `'a` outlived the "shorter free region" `'b`.
///
/// More details can be found in this blog post by Niko:
/// <https://smallcultfollowing.com/babysteps/blog/2019/01/17/polonius-and-region-errors/>
///
/// In the canonical example
/// ```compile_fail
/// fn foo<'a, 'b>(x: &'a u32) -> &'b u32 { x }
/// ```
/// returning `x` requires `&'a u32 <: &'b u32` and hence we establish (transitively) a
/// constraint that `'a: 'b`. It is an error that we have no evidence that this
/// constraint holds.
///
/// If `propagated_outlives_requirements` is `Some`, then we will
/// push unsatisfied obligations into there. Otherwise, we'll
/// report them as errors.
fn check_polonius_subset_errors(
&self,
mut propagated_outlives_requirements: Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
errors_buffer: &mut RegionErrors<'tcx>,
polonius_output: Rc<PoloniusOutput>,
) {
debug!(
"check_polonius_subset_errors: {} subset_errors",
polonius_output.subset_errors.len()
);
// Similarly to `check_universal_regions`: a free region relation, which was not explicitly
// declared ("known") was found by Polonius, so emit an error, or propagate the
// requirements for our caller into the `propagated_outlives_requirements` vector.
//
// Polonius doesn't model regions ("origins") as CFG-subsets or durations, but the
// `longer_fr` and `shorter_fr` terminology will still be used here, for consistency with
// the rest of the NLL infrastructure. The "subset origin" is the "longer free region",
// and the "superset origin" is the outlived "shorter free region".
//
// Note: Polonius will produce a subset error at every point where the unexpected
// `longer_fr`'s "placeholder loan" is contained in the `shorter_fr`. This can be helpful
// for diagnostics in the future, e.g. to point more precisely at the key locations
// requiring this constraint to hold. However, the error and diagnostics code downstream
// expects that these errors are not duplicated (and that they are in a certain order).
// Otherwise, diagnostics messages such as the ones giving names like `'1` to elided or
// anonymous lifetimes for example, could give these names differently, while others like
// the outlives suggestions or the debug output from `#[rustc_regions]` would be
// duplicated. The polonius subset errors are deduplicated here, while keeping the
// CFG-location ordering.
let mut subset_errors: Vec<_> = polonius_output
.subset_errors
.iter()
.flat_map(|(_location, subset_errors)| subset_errors.iter())
.collect();
subset_errors.sort();
subset_errors.dedup();
for (longer_fr, shorter_fr) in subset_errors.into_iter() {
debug!(
"check_polonius_subset_errors: subset_error longer_fr={:?},\
shorter_fr={:?}",
longer_fr, shorter_fr
);
let propagated = self.try_propagate_universal_region_error(
*longer_fr,
*shorter_fr,
&mut propagated_outlives_requirements,
);
if propagated == RegionRelationCheckResult::Error {
errors_buffer.push(RegionErrorKind::RegionError {
longer_fr: *longer_fr,
shorter_fr: *shorter_fr,
fr_origin: NllRegionVariableOrigin::FreeRegion,
is_reported: true,
});
}
}
// Handle the placeholder errors as usual, until the chalk-rustc-polonius triumvirate has
// a more complete picture on how to separate this responsibility.
for (fr, fr_definition) in self.definitions.iter_enumerated() {
match fr_definition.origin {
NllRegionVariableOrigin::FreeRegion => {
// handled by polonius above
}
NllRegionVariableOrigin::Placeholder(placeholder) => {
self.check_bound_universal_region(fr, placeholder, errors_buffer);
}
NllRegionVariableOrigin::Existential { .. } => {
// nothing to check here
}
}
}
}
/// Checks the final value for the free region `fr` to see if it
/// grew too large. In particular, examine what `end(X)` points
/// wound up in `fr`'s final value; for each `end(X)` where `X !=
/// fr`, we want to check that `fr: X`. If not, that's either an
/// error, or something we have to propagate to our creator.
///
/// Things that are to be propagated are accumulated into the
/// `outlives_requirements` vector.
#[instrument(skip(self, propagated_outlives_requirements, errors_buffer), level = "debug")]
fn check_universal_region(
&self,
longer_fr: RegionVid,
propagated_outlives_requirements: &mut Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
errors_buffer: &mut RegionErrors<'tcx>,
) {
let longer_fr_scc = self.constraint_sccs.scc(longer_fr);
// Because this free region must be in the ROOT universe, we
// know it cannot contain any bound universes.
assert!(self.scc_universes[longer_fr_scc] == ty::UniverseIndex::ROOT);
debug_assert!(self.scc_values.placeholders_contained_in(longer_fr_scc).next().is_none());
// Only check all of the relations for the main representative of each
// SCC, otherwise just check that we outlive said representative. This
// reduces the number of redundant relations propagated out of
// closures.
// Note that the representative will be a universal region if there is
// one in this SCC, so we will always check the representative here.
let representative = self.scc_representatives[longer_fr_scc];
if representative != longer_fr {
if let RegionRelationCheckResult::Error = self.check_universal_region_relation(
longer_fr,
representative,
propagated_outlives_requirements,
) {
errors_buffer.push(RegionErrorKind::RegionError {
longer_fr,
shorter_fr: representative,
fr_origin: NllRegionVariableOrigin::FreeRegion,
is_reported: true,
});
}
return;
}
// Find every region `o` such that `fr: o`
// (because `fr` includes `end(o)`).
let mut error_reported = false;
for shorter_fr in self.scc_values.universal_regions_outlived_by(longer_fr_scc) {
if let RegionRelationCheckResult::Error = self.check_universal_region_relation(
longer_fr,
shorter_fr,
propagated_outlives_requirements,
) {
// We only report the first region error. Subsequent errors are hidden so as
// not to overwhelm the user, but we do record them so as to potentially print
// better diagnostics elsewhere...
errors_buffer.push(RegionErrorKind::RegionError {
longer_fr,
shorter_fr,
fr_origin: NllRegionVariableOrigin::FreeRegion,
is_reported: !error_reported,
});
error_reported = true;
}
}
}
/// Checks that we can prove that `longer_fr: shorter_fr`. If we can't we attempt to propagate
/// the constraint outward (e.g. to a closure environment), but if that fails, there is an
/// error.
fn check_universal_region_relation(
&self,
longer_fr: RegionVid,
shorter_fr: RegionVid,
propagated_outlives_requirements: &mut Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
) -> RegionRelationCheckResult {
// If it is known that `fr: o`, carry on.
if self.universal_region_relations.outlives(longer_fr, shorter_fr) {
RegionRelationCheckResult::Ok
} else {
// If we are not in a context where we can't propagate errors, or we
// could not shrink `fr` to something smaller, then just report an
// error.
//
// Note: in this case, we use the unapproximated regions to report the
// error. This gives better error messages in some cases.
self.try_propagate_universal_region_error(
longer_fr,
shorter_fr,
propagated_outlives_requirements,
)
}
}
/// Attempt to propagate a region error (e.g. `'a: 'b`) that is not met to a closure's
/// creator. If we cannot, then the caller should report an error to the user.
fn try_propagate_universal_region_error(
&self,
longer_fr: RegionVid,
shorter_fr: RegionVid,
propagated_outlives_requirements: &mut Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
) -> RegionRelationCheckResult {
if let Some(propagated_outlives_requirements) = propagated_outlives_requirements {
// Shrink `longer_fr` until we find a non-local region (if we do).
// We'll call it `fr-` -- it's ever so slightly smaller than
// `longer_fr`.
if let Some(fr_minus) = self.universal_region_relations.non_local_lower_bound(longer_fr)
{
debug!("try_propagate_universal_region_error: fr_minus={:?}", fr_minus);
let blame_span_category = self.find_outlives_blame_span(
longer_fr,
NllRegionVariableOrigin::FreeRegion,
shorter_fr,
);
// Grow `shorter_fr` until we find some non-local regions. (We
// always will.) We'll call them `shorter_fr+` -- they're ever
// so slightly larger than `shorter_fr`.
let shorter_fr_plus =
self.universal_region_relations.non_local_upper_bounds(shorter_fr);
debug!(
"try_propagate_universal_region_error: shorter_fr_plus={:?}",
shorter_fr_plus
);
for fr in shorter_fr_plus {
// Push the constraint `fr-: shorter_fr+`
propagated_outlives_requirements.push(ClosureOutlivesRequirement {
subject: ClosureOutlivesSubject::Region(fr_minus),
outlived_free_region: fr,
blame_span: blame_span_category.1.span,
category: blame_span_category.0,
});
}
return RegionRelationCheckResult::Propagated;
}
}
RegionRelationCheckResult::Error
}
fn check_bound_universal_region(
&self,
longer_fr: RegionVid,
placeholder: ty::PlaceholderRegion,
errors_buffer: &mut RegionErrors<'tcx>,
) {
debug!("check_bound_universal_region(fr={:?}, placeholder={:?})", longer_fr, placeholder,);
let longer_fr_scc = self.constraint_sccs.scc(longer_fr);
debug!("check_bound_universal_region: longer_fr_scc={:?}", longer_fr_scc,);
// If we have some bound universal region `'a`, then the only
// elements it can contain is itself -- we don't know anything
// else about it!
let Some(error_element) = ({
self.scc_values.elements_contained_in(longer_fr_scc).find(|element| match element {
RegionElement::Location(_) => true,
RegionElement::RootUniversalRegion(_) => true,
RegionElement::PlaceholderRegion(placeholder1) => placeholder != *placeholder1,
})
}) else {
return;
};
debug!("check_bound_universal_region: error_element = {:?}", error_element);
// Find the region that introduced this `error_element`.
errors_buffer.push(RegionErrorKind::BoundUniversalRegionError {
longer_fr,
error_element,
placeholder,
});
}
#[instrument(level = "debug", skip(self, infcx, errors_buffer))]
fn check_member_constraints(
&self,
infcx: &InferCtxt<'tcx>,
errors_buffer: &mut RegionErrors<'tcx>,
) {
let member_constraints = self.member_constraints.clone();
for m_c_i in member_constraints.all_indices() {
debug!(?m_c_i);
let m_c = &member_constraints[m_c_i];
let member_region_vid = m_c.member_region_vid;
debug!(
?member_region_vid,
value = ?self.region_value_str(member_region_vid),
);
let choice_regions = member_constraints.choice_regions(m_c_i);
debug!(?choice_regions);
// Did the member region wind up equal to any of the option regions?
if let Some(o) =
choice_regions.iter().find(|&&o_r| self.eval_equal(o_r, m_c.member_region_vid))
{
debug!("evaluated as equal to {:?}", o);
continue;
}
// If not, report an error.
let member_region = infcx.tcx.mk_region(ty::ReVar(member_region_vid));
errors_buffer.push(RegionErrorKind::UnexpectedHiddenRegion {
span: m_c.definition_span,
hidden_ty: m_c.hidden_ty,
key: m_c.key,
member_region,
});
}
}
/// We have a constraint `fr1: fr2` that is not satisfied, where
/// `fr2` represents some universal region. Here, `r` is some
/// region where we know that `fr1: r` and this function has the
/// job of determining whether `r` is "to blame" for the fact that
/// `fr1: fr2` is required.
///
/// This is true under two conditions:
///
/// - `r == fr2`
/// - `fr2` is `'static` and `r` is some placeholder in a universe
/// that cannot be named by `fr1`; in that case, we will require
/// that `fr1: 'static` because it is the only way to `fr1: r` to
/// be satisfied. (See `add_incompatible_universe`.)
pub(crate) fn provides_universal_region(
&self,
r: RegionVid,
fr1: RegionVid,
fr2: RegionVid,
) -> bool {
debug!("provides_universal_region(r={:?}, fr1={:?}, fr2={:?})", r, fr1, fr2);
let result = {
r == fr2 || {
fr2 == self.universal_regions.fr_static && self.cannot_name_placeholder(fr1, r)
}
};
debug!("provides_universal_region: result = {:?}", result);
result
}
/// If `r2` represents a placeholder region, then this returns
/// `true` if `r1` cannot name that placeholder in its
/// value; otherwise, returns `false`.
pub(crate) fn cannot_name_placeholder(&self, r1: RegionVid, r2: RegionVid) -> bool {
debug!("cannot_name_value_of(r1={:?}, r2={:?})", r1, r2);
match self.definitions[r2].origin {
NllRegionVariableOrigin::Placeholder(placeholder) => {
let universe1 = self.definitions[r1].universe;
debug!(
"cannot_name_value_of: universe1={:?} placeholder={:?}",
universe1, placeholder
);
universe1.cannot_name(placeholder.universe)
}
NllRegionVariableOrigin::FreeRegion | NllRegionVariableOrigin::Existential { .. } => {
false
}
}
}
/// Finds a good `ObligationCause` to blame for the fact that `fr1` outlives `fr2`.
pub(crate) fn find_outlives_blame_span(
&self,
fr1: RegionVid,
fr1_origin: NllRegionVariableOrigin,
fr2: RegionVid,
) -> (ConstraintCategory<'tcx>, ObligationCause<'tcx>) {
let BlameConstraint { category, cause, .. } = self
.best_blame_constraint(fr1, fr1_origin, |r| self.provides_universal_region(r, fr1, fr2))
.0;
(category, cause)
}
/// Walks the graph of constraints (where `'a: 'b` is considered
/// an edge `'a -> 'b`) to find all paths from `from_region` to
/// `to_region`. The paths are accumulated into the vector
/// `results`. The paths are stored as a series of
/// `ConstraintIndex` values -- in other words, a list of *edges*.
///
/// Returns: a series of constraints as well as the region `R`
/// that passed the target test.
pub(crate) fn find_constraint_paths_between_regions(
&self,
from_region: RegionVid,
target_test: impl Fn(RegionVid) -> bool,
) -> Option<(Vec<OutlivesConstraint<'tcx>>, RegionVid)> {
let mut context = IndexVec::from_elem(Trace::NotVisited, &self.definitions);
context[from_region] = Trace::StartRegion;
// Use a deque so that we do a breadth-first search. We will
// stop at the first match, which ought to be the shortest
// path (fewest constraints).
let mut deque = VecDeque::new();
deque.push_back(from_region);
while let Some(r) = deque.pop_front() {
debug!(
"find_constraint_paths_between_regions: from_region={:?} r={:?} value={}",
from_region,
r,
self.region_value_str(r),
);
// Check if we reached the region we were looking for. If so,
// we can reconstruct the path that led to it and return it.
if target_test(r) {
let mut result = vec![];
let mut p = r;
loop {
match context[p].clone() {
Trace::NotVisited => {
bug!("found unvisited region {:?} on path to {:?}", p, r)
}
Trace::FromOutlivesConstraint(c) => {
p = c.sup;
result.push(c);
}
Trace::StartRegion => {
result.reverse();
return Some((result, r));
}
}
}
}
// Otherwise, walk over the outgoing constraints and
// enqueue any regions we find, keeping track of how we
// reached them.
// A constraint like `'r: 'x` can come from our constraint
// graph.
let fr_static = self.universal_regions.fr_static;
let outgoing_edges_from_graph =
self.constraint_graph.outgoing_edges(r, &self.constraints, fr_static);
// Always inline this closure because it can be hot.
let mut handle_constraint = #[inline(always)]
|constraint: OutlivesConstraint<'tcx>| {
debug_assert_eq!(constraint.sup, r);
let sub_region = constraint.sub;
if let Trace::NotVisited = context[sub_region] {
context[sub_region] = Trace::FromOutlivesConstraint(constraint);
deque.push_back(sub_region);
}
};
// This loop can be hot.
for constraint in outgoing_edges_from_graph {
handle_constraint(constraint);
}
// Member constraints can also give rise to `'r: 'x` edges that
// were not part of the graph initially, so watch out for those.
// (But they are extremely rare; this loop is very cold.)
for constraint in self.applied_member_constraints(r) {
let p_c = &self.member_constraints[constraint.member_constraint_index];
let constraint = OutlivesConstraint {
sup: r,
sub: constraint.min_choice,
locations: Locations::All(p_c.definition_span),
span: p_c.definition_span,
category: ConstraintCategory::OpaqueType,
variance_info: ty::VarianceDiagInfo::default(),
from_closure: false,
};
handle_constraint(constraint);
}
}
None
}
/// Finds some region R such that `fr1: R` and `R` is live at `elem`.
#[instrument(skip(self), level = "trace", ret)]
pub(crate) fn find_sub_region_live_at(&self, fr1: RegionVid, elem: Location) -> RegionVid {
trace!(scc = ?self.constraint_sccs.scc(fr1));
trace!(universe = ?self.scc_universes[self.constraint_sccs.scc(fr1)]);
self.find_constraint_paths_between_regions(fr1, |r| {
// First look for some `r` such that `fr1: r` and `r` is live at `elem`
trace!(?r, liveness_constraints=?self.liveness_constraints.region_value_str(r));
self.liveness_constraints.contains(r, elem)
})
.or_else(|| {
// If we fail to find that, we may find some `r` such that
// `fr1: r` and `r` is a placeholder from some universe
// `fr1` cannot name. This would force `fr1` to be
// `'static`.
self.find_constraint_paths_between_regions(fr1, |r| {
self.cannot_name_placeholder(fr1, r)
})
})
.or_else(|| {
// If we fail to find THAT, it may be that `fr1` is a
// placeholder that cannot "fit" into its SCC. In that
// case, there should be some `r` where `fr1: r` and `fr1` is a
// placeholder that `r` cannot name. We can blame that
// edge.
//
// Remember that if `R1: R2`, then the universe of R1
// must be able to name the universe of R2, because R2 will
// be at least `'empty(Universe(R2))`, and `R1` must be at
// larger than that.
self.find_constraint_paths_between_regions(fr1, |r| {
self.cannot_name_placeholder(r, fr1)
})
})
.map(|(_path, r)| r)
.unwrap()
}
/// Get the region outlived by `longer_fr` and live at `element`.
pub(crate) fn region_from_element(
&self,
longer_fr: RegionVid,
element: &RegionElement,
) -> RegionVid {
match *element {
RegionElement::Location(l) => self.find_sub_region_live_at(longer_fr, l),
RegionElement::RootUniversalRegion(r) => r,
RegionElement::PlaceholderRegion(error_placeholder) => self
.definitions
.iter_enumerated()
.find_map(|(r, definition)| match definition.origin {
NllRegionVariableOrigin::Placeholder(p) if p == error_placeholder => Some(r),
_ => None,
})
.unwrap(),
}
}
/// Get the region definition of `r`.
pub(crate) fn region_definition(&self, r: RegionVid) -> &RegionDefinition<'tcx> {
&self.definitions[r]
}
/// Check if the SCC of `r` contains `upper`.
pub(crate) fn upper_bound_in_region_scc(&self, r: RegionVid, upper: RegionVid) -> bool {
let r_scc = self.constraint_sccs.scc(r);
self.scc_values.contains(r_scc, upper)
}
pub(crate) fn universal_regions(&self) -> &UniversalRegions<'tcx> {
self.universal_regions.as_ref()
}
/// Tries to find the best constraint to blame for the fact that
/// `R: from_region`, where `R` is some region that meets
/// `target_test`. This works by following the constraint graph,
/// creating a constraint path that forces `R` to outlive
/// `from_region`, and then finding the best choices within that
/// path to blame.
#[instrument(level = "debug", skip(self, target_test))]
pub(crate) fn best_blame_constraint(
&self,
from_region: RegionVid,
from_region_origin: NllRegionVariableOrigin,
target_test: impl Fn(RegionVid) -> bool,
) -> (BlameConstraint<'tcx>, Vec<ExtraConstraintInfo>) {
// Find all paths
let (path, target_region) =
self.find_constraint_paths_between_regions(from_region, target_test).unwrap();
debug!(
"path={:#?}",
path.iter()
.map(|c| format!(
"{:?} ({:?}: {:?})",
c,
self.constraint_sccs.scc(c.sup),
self.constraint_sccs.scc(c.sub),
))
.collect::<Vec<_>>()
);
let mut extra_info = vec![];
for constraint in path.iter() {
let outlived = constraint.sub;
let Some(origin) = self.var_infos.get(outlived) else { continue; };
let RegionVariableOrigin::Nll(NllRegionVariableOrigin::Placeholder(p)) = origin.origin else { continue; };
debug!(?constraint, ?p);
let ConstraintCategory::Predicate(span) = constraint.category else { continue; };
extra_info.push(ExtraConstraintInfo::PlaceholderFromPredicate(span));
// We only want to point to one
break;
}
// We try to avoid reporting a `ConstraintCategory::Predicate` as our best constraint.
// Instead, we use it to produce an improved `ObligationCauseCode`.
// FIXME - determine what we should do if we encounter multiple `ConstraintCategory::Predicate`
// constraints. Currently, we just pick the first one.
let cause_code = path
.iter()
.find_map(|constraint| {
if let ConstraintCategory::Predicate(predicate_span) = constraint.category {
// We currently do not store the `DefId` in the `ConstraintCategory`
// for performances reasons. The error reporting code used by NLL only
// uses the span, so this doesn't cause any problems at the moment.
Some(ObligationCauseCode::BindingObligation(
CRATE_DEF_ID.to_def_id(),
predicate_span,
))
} else {
None
}
})
.unwrap_or_else(|| ObligationCauseCode::MiscObligation);
// Classify each of the constraints along the path.
let mut categorized_path: Vec<BlameConstraint<'tcx>> = path
.iter()
.map(|constraint| BlameConstraint {
category: constraint.category,
from_closure: constraint.from_closure,
cause: ObligationCause::new(constraint.span, CRATE_HIR_ID, cause_code.clone()),
variance_info: constraint.variance_info,
outlives_constraint: *constraint,
})
.collect();
debug!("categorized_path={:#?}", categorized_path);
// To find the best span to cite, we first try to look for the
// final constraint that is interesting and where the `sup` is
// not unified with the ultimate target region. The reason
// for this is that we have a chain of constraints that lead
// from the source to the target region, something like:
//
// '0: '1 ('0 is the source)
// '1: '2
// '2: '3
// '3: '4
// '4: '5
// '5: '6 ('6 is the target)
//
// Some of those regions are unified with `'6` (in the same
// SCC). We want to screen those out. After that point, the
// "closest" constraint we have to the end is going to be the
// most likely to be the point where the value escapes -- but
// we still want to screen for an "interesting" point to
// highlight (e.g., a call site or something).
let target_scc = self.constraint_sccs.scc(target_region);
let mut range = 0..path.len();
// As noted above, when reporting an error, there is typically a chain of constraints
// leading from some "source" region which must outlive some "target" region.
// In most cases, we prefer to "blame" the constraints closer to the target --
// but there is one exception. When constraints arise from higher-ranked subtyping,
// we generally prefer to blame the source value,
// as the "target" in this case tends to be some type annotation that the user gave.
// Therefore, if we find that the region origin is some instantiation
// of a higher-ranked region, we start our search from the "source" point
// rather than the "target", and we also tweak a few other things.
//
// An example might be this bit of Rust code:
//
// ```rust
// let x: fn(&'static ()) = |_| {};
// let y: for<'a> fn(&'a ()) = x;
// ```
//
// In MIR, this will be converted into a combination of assignments and type ascriptions.
// In particular, the 'static is imposed through a type ascription:
//
// ```rust
// x = ...;
// AscribeUserType(x, fn(&'static ())
// y = x;
// ```
//
// We wind up ultimately with constraints like
//
// ```rust
// !a: 'temp1 // from the `y = x` statement
// 'temp1: 'temp2
// 'temp2: 'static // from the AscribeUserType
// ```
//
// and here we prefer to blame the source (the y = x statement).
let blame_source = match from_region_origin {
NllRegionVariableOrigin::FreeRegion
| NllRegionVariableOrigin::Existential { from_forall: false } => true,
NllRegionVariableOrigin::Placeholder(_)
| NllRegionVariableOrigin::Existential { from_forall: true } => false,
};
let find_region = |i: &usize| {
let constraint = &path[*i];
let constraint_sup_scc = self.constraint_sccs.scc(constraint.sup);
if blame_source {
match categorized_path[*i].category {
ConstraintCategory::OpaqueType
| ConstraintCategory::Boring
| ConstraintCategory::BoringNoLocation
| ConstraintCategory::Internal
| ConstraintCategory::Predicate(_) => false,
ConstraintCategory::TypeAnnotation
| ConstraintCategory::Return(_)
| ConstraintCategory::Yield => true,
_ => constraint_sup_scc != target_scc,
}
} else {
!matches!(
categorized_path[*i].category,
ConstraintCategory::OpaqueType
| ConstraintCategory::Boring
| ConstraintCategory::BoringNoLocation
| ConstraintCategory::Internal
| ConstraintCategory::Predicate(_)
)
}
};
let best_choice =
if blame_source { range.rev().find(find_region) } else { range.find(find_region) };
debug!(?best_choice, ?blame_source, ?extra_info);
if let Some(i) = best_choice {
if let Some(next) = categorized_path.get(i + 1) {
if matches!(categorized_path[i].category, ConstraintCategory::Return(_))
&& next.category == ConstraintCategory::OpaqueType
{
// The return expression is being influenced by the return type being
// impl Trait, point at the return type and not the return expr.
return (next.clone(), extra_info);
}
}
if categorized_path[i].category == ConstraintCategory::Return(ReturnConstraint::Normal)
{
let field = categorized_path.iter().find_map(|p| {
if let ConstraintCategory::ClosureUpvar(f) = p.category {
Some(f)
} else {
None
}
});
if let Some(field) = field {
categorized_path[i].category =
ConstraintCategory::Return(ReturnConstraint::ClosureUpvar(field));
}
}
return (categorized_path[i].clone(), extra_info);
}
// If that search fails, that is.. unusual. Maybe everything
// is in the same SCC or something. In that case, find what
// appears to be the most interesting point to report to the
// user via an even more ad-hoc guess.
categorized_path.sort_by(|p0, p1| p0.category.cmp(&p1.category));
debug!("sorted_path={:#?}", categorized_path);
(categorized_path.remove(0), extra_info)
}
pub(crate) fn universe_info(&self, universe: ty::UniverseIndex) -> UniverseInfo<'tcx> {
self.universe_causes[&universe].clone()
}
/// Tries to find the terminator of the loop in which the region 'r' resides.
/// Returns the location of the terminator if found.
pub(crate) fn find_loop_terminator_location(
&self,
r: RegionVid,
body: &Body<'_>,
) -> Option<Location> {
let scc = self.constraint_sccs.scc(r.to_region_vid());
let locations = self.scc_values.locations_outlived_by(scc);
for location in locations {
let bb = &body[location.block];
if let Some(terminator) = &bb.terminator {
// terminator of a loop should be TerminatorKind::FalseUnwind
if let TerminatorKind::FalseUnwind { .. } = terminator.kind {
return Some(location);
}
}
}
None
}
}
impl<'tcx> RegionDefinition<'tcx> {
fn new(universe: ty::UniverseIndex, rv_origin: RegionVariableOrigin) -> Self {
// Create a new region definition. Note that, for free
// regions, the `external_name` field gets updated later in
// `init_universal_regions`.
let origin = match rv_origin {
RegionVariableOrigin::Nll(origin) => origin,
_ => NllRegionVariableOrigin::Existential { from_forall: false },
};
Self { origin, universe, external_name: None }
}
}
#[derive(Clone, Debug)]
pub struct BlameConstraint<'tcx> {
pub category: ConstraintCategory<'tcx>,
pub from_closure: bool,
pub cause: ObligationCause<'tcx>,
pub variance_info: ty::VarianceDiagInfo<'tcx>,
pub outlives_constraint: OutlivesConstraint<'tcx>,
}