1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
// The outlines relation `T: 'a` or `'a: 'b`. This code frequently
// refers to rules defined in RFC 1214 (`OutlivesFooBar`), so see that
// RFC for reference.
use rustc_data_structures::sso::SsoHashSet;
use rustc_hir::def_id::DefId;
use rustc_middle::ty::subst::{GenericArg, GenericArgKind};
use rustc_middle::ty::{self, SubstsRef, Ty, TyCtxt, TypeVisitable};
use smallvec::{smallvec, SmallVec};
#[derive(Debug)]
pub enum Component<'tcx> {
Region(ty::Region<'tcx>),
Param(ty::ParamTy),
UnresolvedInferenceVariable(ty::InferTy),
// Projections like `T::Foo` are tricky because a constraint like
// `T::Foo: 'a` can be satisfied in so many ways. There may be a
// where-clause that says `T::Foo: 'a`, or the defining trait may
// include a bound like `type Foo: 'static`, or -- in the most
// conservative way -- we can prove that `T: 'a` (more generally,
// that all components in the projection outlive `'a`). This code
// is not in a position to judge which is the best technique, so
// we just product the projection as a component and leave it to
// the consumer to decide (but see `EscapingProjection` below).
Projection(ty::AliasTy<'tcx>),
// In the case where a projection has escaping regions -- meaning
// regions bound within the type itself -- we always use
// the most conservative rule, which requires that all components
// outlive the bound. So for example if we had a type like this:
//
// for<'a> Trait1< <T as Trait2<'a,'b>>::Foo >
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// then the inner projection (underlined) has an escaping region
// `'a`. We consider that outer trait `'c` to meet a bound if `'b`
// outlives `'b: 'c`, and we don't consider whether the trait
// declares that `Foo: 'static` etc. Therefore, we just return the
// free components of such a projection (in this case, `'b`).
//
// However, in the future, we may want to get smarter, and
// actually return a "higher-ranked projection" here. Therefore,
// we mark that these components are part of an escaping
// projection, so that implied bounds code can avoid relying on
// them. This gives us room to improve the regionck reasoning in
// the future without breaking backwards compat.
EscapingProjection(Vec<Component<'tcx>>),
Opaque(DefId, SubstsRef<'tcx>),
}
/// Push onto `out` all the things that must outlive `'a` for the condition
/// `ty0: 'a` to hold. Note that `ty0` must be a **fully resolved type**.
pub fn push_outlives_components<'tcx>(
tcx: TyCtxt<'tcx>,
ty0: Ty<'tcx>,
out: &mut SmallVec<[Component<'tcx>; 4]>,
) {
let mut visited = SsoHashSet::new();
compute_components(tcx, ty0, out, &mut visited);
debug!("components({:?}) = {:?}", ty0, out);
}
fn compute_components<'tcx>(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
out: &mut SmallVec<[Component<'tcx>; 4]>,
visited: &mut SsoHashSet<GenericArg<'tcx>>,
) {
// Descend through the types, looking for the various "base"
// components and collecting them into `out`. This is not written
// with `collect()` because of the need to sometimes skip subtrees
// in the `subtys` iterator (e.g., when encountering a
// projection).
match *ty.kind() {
ty::FnDef(_, substs) => {
// HACK(eddyb) ignore lifetimes found shallowly in `substs`.
// This is inconsistent with `ty::Adt` (including all substs)
// and with `ty::Closure` (ignoring all substs other than
// upvars, of which a `ty::FnDef` doesn't have any), but
// consistent with previous (accidental) behavior.
// See https://github.com/rust-lang/rust/issues/70917
// for further background and discussion.
for child in substs {
match child.unpack() {
GenericArgKind::Type(ty) => {
compute_components(tcx, ty, out, visited);
}
GenericArgKind::Lifetime(_) => {}
GenericArgKind::Const(_) => {
compute_components_recursive(tcx, child, out, visited);
}
}
}
}
ty::Array(element, _) => {
// Don't look into the len const as it doesn't affect regions
compute_components(tcx, element, out, visited);
}
ty::Closure(_, ref substs) => {
let tupled_ty = substs.as_closure().tupled_upvars_ty();
compute_components(tcx, tupled_ty, out, visited);
}
ty::Generator(_, ref substs, _) => {
// Same as the closure case
let tupled_ty = substs.as_generator().tupled_upvars_ty();
compute_components(tcx, tupled_ty, out, visited);
// We ignore regions in the generator interior as we don't
// want these to affect region inference
}
// All regions are bound inside a witness
ty::GeneratorWitness(..) => (),
// OutlivesTypeParameterEnv -- the actual checking that `X:'a`
// is implied by the environment is done in regionck.
ty::Param(p) => {
out.push(Component::Param(p));
}
// Ignore lifetimes found in opaque types. Opaque types can
// have lifetimes in their substs which their hidden type doesn't
// actually use. If we inferred that an opaque type is outlived by
// its parameter lifetimes, then we could prove that any lifetime
// outlives any other lifetime, which is unsound.
// See https://github.com/rust-lang/rust/issues/84305 for
// more details.
ty::Alias(ty::Opaque, ty::AliasTy { def_id, substs, .. }) => {
out.push(Component::Opaque(def_id, substs));
},
// For projections, we prefer to generate an obligation like
// `<P0 as Trait<P1...Pn>>::Foo: 'a`, because this gives the
// regionck more ways to prove that it holds. However,
// regionck is not (at least currently) prepared to deal with
// higher-ranked regions that may appear in the
// trait-ref. Therefore, if we see any higher-ranked regions,
// we simply fallback to the most restrictive rule, which
// requires that `Pi: 'a` for all `i`.
ty::Alias(ty::Projection, ref data) => {
if !data.has_escaping_bound_vars() {
// best case: no escaping regions, so push the
// projection and skip the subtree (thus generating no
// constraints for Pi). This defers the choice between
// the rules OutlivesProjectionEnv,
// OutlivesProjectionTraitDef, and
// OutlivesProjectionComponents to regionck.
out.push(Component::Projection(*data));
} else {
// fallback case: hard code
// OutlivesProjectionComponents. Continue walking
// through and constrain Pi.
let mut subcomponents = smallvec![];
let mut subvisited = SsoHashSet::new();
compute_components_recursive(tcx, ty.into(), &mut subcomponents, &mut subvisited);
out.push(Component::EscapingProjection(subcomponents.into_iter().collect()));
}
}
// We assume that inference variables are fully resolved.
// So, if we encounter an inference variable, just record
// the unresolved variable as a component.
ty::Infer(infer_ty) => {
out.push(Component::UnresolvedInferenceVariable(infer_ty));
}
// Most types do not introduce any region binders, nor
// involve any other subtle cases, and so the WF relation
// simply constraints any regions referenced directly by
// the type and then visits the types that are lexically
// contained within. (The comments refer to relevant rules
// from RFC1214.)
ty::Bool | // OutlivesScalar
ty::Char | // OutlivesScalar
ty::Int(..) | // OutlivesScalar
ty::Uint(..) | // OutlivesScalar
ty::Float(..) | // OutlivesScalar
ty::Never | // ...
ty::Adt(..) | // OutlivesNominalType
ty::Foreign(..) | // OutlivesNominalType
ty::Str | // OutlivesScalar (ish)
ty::Slice(..) | // ...
ty::RawPtr(..) | // ...
ty::Ref(..) | // OutlivesReference
ty::Tuple(..) | // ...
ty::FnPtr(_) | // OutlivesFunction (*)
ty::Dynamic(..) | // OutlivesObject, OutlivesFragment (*)
ty::Placeholder(..) |
ty::Bound(..) |
ty::Error(_) => {
// (*) Function pointers and trait objects are both binders.
// In the RFC, this means we would add the bound regions to
// the "bound regions list". In our representation, no such
// list is maintained explicitly, because bound regions
// themselves can be readily identified.
compute_components_recursive(tcx, ty.into(), out, visited);
}
}
}
/// Collect [Component]s for *all* the substs of `parent`.
///
/// This should not be used to get the components of `parent` itself.
/// Use [push_outlives_components] instead.
pub(super) fn compute_components_recursive<'tcx>(
tcx: TyCtxt<'tcx>,
parent: GenericArg<'tcx>,
out: &mut SmallVec<[Component<'tcx>; 4]>,
visited: &mut SsoHashSet<GenericArg<'tcx>>,
) {
for child in parent.walk_shallow(visited) {
match child.unpack() {
GenericArgKind::Type(ty) => {
compute_components(tcx, ty, out, visited);
}
GenericArgKind::Lifetime(lt) => {
// Ignore late-bound regions.
if !lt.is_late_bound() {
out.push(Component::Region(lt));
}
}
GenericArgKind::Const(_) => {
compute_components_recursive(tcx, child, out, visited);
}
}
}
}