1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
use rustc_hir as hir;
use rustc_infer::infer::canonical::{Canonical, QueryResponse};
use rustc_infer::infer::{DefiningAnchor, TyCtxtInferExt};
use rustc_infer::traits::ObligationCauseCode;
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::{self, FnSig, Lift, PolyFnSig, Ty, TyCtxt, TypeFoldable};
use rustc_middle::ty::{ParamEnvAnd, Predicate, ToPredicate};
use rustc_middle::ty::{UserSelfTy, UserSubsts};
use rustc_span::{Span, DUMMY_SP};
use rustc_trait_selection::infer::InferCtxtBuilderExt;
use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
use rustc_trait_selection::traits::query::type_op::ascribe_user_type::AscribeUserType;
use rustc_trait_selection::traits::query::type_op::eq::Eq;
use rustc_trait_selection::traits::query::type_op::normalize::Normalize;
use rustc_trait_selection::traits::query::type_op::prove_predicate::ProvePredicate;
use rustc_trait_selection::traits::query::type_op::subtype::Subtype;
use rustc_trait_selection::traits::query::{Fallible, NoSolution};
use rustc_trait_selection::traits::{Normalized, Obligation, ObligationCause, ObligationCtxt};
use std::fmt;
use std::iter::zip;

pub(crate) fn provide(p: &mut Providers) {
    *p = Providers {
        type_op_ascribe_user_type,
        type_op_eq,
        type_op_prove_predicate,
        type_op_subtype,
        type_op_normalize_ty,
        type_op_normalize_predicate,
        type_op_normalize_fn_sig,
        type_op_normalize_poly_fn_sig,
        ..*p
    };
}

fn type_op_ascribe_user_type<'tcx>(
    tcx: TyCtxt<'tcx>,
    canonicalized: Canonical<'tcx, ParamEnvAnd<'tcx, AscribeUserType<'tcx>>>,
) -> Result<&'tcx Canonical<'tcx, QueryResponse<'tcx, ()>>, NoSolution> {
    tcx.infer_ctxt().enter_canonical_trait_query(&canonicalized, |ocx, key| {
        type_op_ascribe_user_type_with_span(ocx, key, None)
    })
}

/// The core of the `type_op_ascribe_user_type` query: for diagnostics purposes in NLL HRTB errors,
/// this query can be re-run to better track the span of the obligation cause, and improve the error
/// message. Do not call directly unless you're in that very specific context.
pub fn type_op_ascribe_user_type_with_span<'tcx>(
    ocx: &ObligationCtxt<'_, 'tcx>,
    key: ParamEnvAnd<'tcx, AscribeUserType<'tcx>>,
    span: Option<Span>,
) -> Result<(), NoSolution> {
    let (param_env, AscribeUserType { mir_ty, def_id, user_substs }) = key.into_parts();
    debug!(
        "type_op_ascribe_user_type: mir_ty={:?} def_id={:?} user_substs={:?}",
        mir_ty, def_id, user_substs
    );
    let span = span.unwrap_or(DUMMY_SP);

    let UserSubsts { user_self_ty, substs } = user_substs;
    let tcx = ocx.infcx.tcx;
    let cause = ObligationCause::dummy_with_span(span);

    let ty = tcx.bound_type_of(def_id).subst(tcx, substs);
    let ty = ocx.normalize(&cause, param_env, ty);
    debug!("relate_type_and_user_type: ty of def-id is {:?}", ty);

    ocx.eq(&cause, param_env, mir_ty, ty)?;

    // Prove the predicates coming along with `def_id`.
    //
    // Also, normalize the `instantiated_predicates`
    // because otherwise we wind up with duplicate "type
    // outlives" error messages.
    let instantiated_predicates = tcx.predicates_of(def_id).instantiate(tcx, substs);

    debug!(?instantiated_predicates);
    for (instantiated_predicate, predicate_span) in
        zip(instantiated_predicates.predicates, instantiated_predicates.spans)
    {
        let span = if span == DUMMY_SP { predicate_span } else { span };
        let cause = ObligationCause::new(
            span,
            hir::CRATE_HIR_ID,
            ObligationCauseCode::AscribeUserTypeProvePredicate(predicate_span),
        );
        let instantiated_predicate =
            ocx.normalize(&cause.clone(), param_env, instantiated_predicate);

        ocx.register_obligation(Obligation::new(tcx, cause, param_env, instantiated_predicate));
    }

    if let Some(UserSelfTy { impl_def_id, self_ty }) = user_self_ty {
        let impl_self_ty = tcx.bound_type_of(impl_def_id).subst(tcx, substs);
        let impl_self_ty = ocx.normalize(&cause, param_env, impl_self_ty);

        ocx.eq(&cause, param_env, self_ty, impl_self_ty)?;

        let predicate: Predicate<'tcx> =
            ty::Binder::dummy(ty::PredicateKind::WellFormed(impl_self_ty.into())).to_predicate(tcx);
        ocx.register_obligation(Obligation::new(tcx, cause.clone(), param_env, predicate));
    }

    // In addition to proving the predicates, we have to
    // prove that `ty` is well-formed -- this is because
    // the WF of `ty` is predicated on the substs being
    // well-formed, and we haven't proven *that*. We don't
    // want to prove the WF of types from  `substs` directly because they
    // haven't been normalized.
    //
    // FIXME(nmatsakis): Well, perhaps we should normalize
    // them?  This would only be relevant if some input
    // type were ill-formed but did not appear in `ty`,
    // which...could happen with normalization...
    let predicate: Predicate<'tcx> =
        ty::Binder::dummy(ty::PredicateKind::WellFormed(ty.into())).to_predicate(tcx);
    ocx.register_obligation(Obligation::new(tcx, cause, param_env, predicate));
    Ok(())
}

fn type_op_eq<'tcx>(
    tcx: TyCtxt<'tcx>,
    canonicalized: Canonical<'tcx, ParamEnvAnd<'tcx, Eq<'tcx>>>,
) -> Result<&'tcx Canonical<'tcx, QueryResponse<'tcx, ()>>, NoSolution> {
    tcx.infer_ctxt().enter_canonical_trait_query(&canonicalized, |ocx, key| {
        let (param_env, Eq { a, b }) = key.into_parts();
        Ok(ocx.eq(&ObligationCause::dummy(), param_env, a, b)?)
    })
}

fn type_op_normalize<'tcx, T>(
    ocx: &ObligationCtxt<'_, 'tcx>,
    key: ParamEnvAnd<'tcx, Normalize<T>>,
) -> Fallible<T>
where
    T: fmt::Debug + TypeFoldable<'tcx> + Lift<'tcx>,
{
    let (param_env, Normalize { value }) = key.into_parts();
    let Normalized { value, obligations } =
        ocx.infcx.at(&ObligationCause::dummy(), param_env).query_normalize(value)?;
    ocx.register_obligations(obligations);
    Ok(value)
}

fn type_op_normalize_ty<'tcx>(
    tcx: TyCtxt<'tcx>,
    canonicalized: Canonical<'tcx, ParamEnvAnd<'tcx, Normalize<Ty<'tcx>>>>,
) -> Result<&'tcx Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>, NoSolution> {
    tcx.infer_ctxt().enter_canonical_trait_query(&canonicalized, type_op_normalize)
}

fn type_op_normalize_predicate<'tcx>(
    tcx: TyCtxt<'tcx>,
    canonicalized: Canonical<'tcx, ParamEnvAnd<'tcx, Normalize<Predicate<'tcx>>>>,
) -> Result<&'tcx Canonical<'tcx, QueryResponse<'tcx, Predicate<'tcx>>>, NoSolution> {
    tcx.infer_ctxt().enter_canonical_trait_query(&canonicalized, type_op_normalize)
}

fn type_op_normalize_fn_sig<'tcx>(
    tcx: TyCtxt<'tcx>,
    canonicalized: Canonical<'tcx, ParamEnvAnd<'tcx, Normalize<FnSig<'tcx>>>>,
) -> Result<&'tcx Canonical<'tcx, QueryResponse<'tcx, FnSig<'tcx>>>, NoSolution> {
    tcx.infer_ctxt().enter_canonical_trait_query(&canonicalized, type_op_normalize)
}

fn type_op_normalize_poly_fn_sig<'tcx>(
    tcx: TyCtxt<'tcx>,
    canonicalized: Canonical<'tcx, ParamEnvAnd<'tcx, Normalize<PolyFnSig<'tcx>>>>,
) -> Result<&'tcx Canonical<'tcx, QueryResponse<'tcx, PolyFnSig<'tcx>>>, NoSolution> {
    tcx.infer_ctxt().enter_canonical_trait_query(&canonicalized, type_op_normalize)
}

fn type_op_subtype<'tcx>(
    tcx: TyCtxt<'tcx>,
    canonicalized: Canonical<'tcx, ParamEnvAnd<'tcx, Subtype<'tcx>>>,
) -> Result<&'tcx Canonical<'tcx, QueryResponse<'tcx, ()>>, NoSolution> {
    tcx.infer_ctxt().enter_canonical_trait_query(&canonicalized, |ocx, key| {
        let (param_env, Subtype { sub, sup }) = key.into_parts();
        Ok(ocx.sup(&ObligationCause::dummy(), param_env, sup, sub)?)
    })
}

fn type_op_prove_predicate<'tcx>(
    tcx: TyCtxt<'tcx>,
    canonicalized: Canonical<'tcx, ParamEnvAnd<'tcx, ProvePredicate<'tcx>>>,
) -> Result<&'tcx Canonical<'tcx, QueryResponse<'tcx, ()>>, NoSolution> {
    // HACK This bubble is required for this test to pass:
    // impl-trait/issue-99642.rs
    tcx.infer_ctxt().with_opaque_type_inference(DefiningAnchor::Bubble).enter_canonical_trait_query(
        &canonicalized,
        |ocx, key| {
            type_op_prove_predicate_with_cause(ocx, key, ObligationCause::dummy());
            Ok(())
        },
    )
}

/// The core of the `type_op_prove_predicate` query: for diagnostics purposes in NLL HRTB errors,
/// this query can be re-run to better track the span of the obligation cause, and improve the error
/// message. Do not call directly unless you're in that very specific context.
pub fn type_op_prove_predicate_with_cause<'tcx>(
    ocx: &ObligationCtxt<'_, 'tcx>,
    key: ParamEnvAnd<'tcx, ProvePredicate<'tcx>>,
    cause: ObligationCause<'tcx>,
) {
    let (param_env, ProvePredicate { predicate }) = key.into_parts();
    ocx.register_obligation(Obligation::new(ocx.infcx.tcx, cause, param_env, predicate));
}