1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::{pluralize, struct_span_err, Applicability, MultiSpan};
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_middle::ty::Representability;
use rustc_middle::ty::{self, DefIdTree, Ty, TyCtxt};
use rustc_query_system::query::QueryInfo;
use rustc_query_system::Value;
use rustc_span::def_id::LocalDefId;
use rustc_span::Span;

use std::fmt::Write;

impl<'tcx> Value<TyCtxt<'tcx>> for Ty<'_> {
    fn from_cycle_error(tcx: TyCtxt<'tcx>, _: &[QueryInfo]) -> Self {
        // SAFETY: This is never called when `Self` is not `Ty<'tcx>`.
        // FIXME: Represent the above fact in the trait system somehow.
        unsafe { std::mem::transmute::<Ty<'tcx>, Ty<'_>>(tcx.ty_error()) }
    }
}

impl<'tcx> Value<TyCtxt<'tcx>> for ty::SymbolName<'_> {
    fn from_cycle_error(tcx: TyCtxt<'tcx>, _: &[QueryInfo]) -> Self {
        // SAFETY: This is never called when `Self` is not `SymbolName<'tcx>`.
        // FIXME: Represent the above fact in the trait system somehow.
        unsafe {
            std::mem::transmute::<ty::SymbolName<'tcx>, ty::SymbolName<'_>>(ty::SymbolName::new(
                tcx, "<error>",
            ))
        }
    }
}

impl<'tcx> Value<TyCtxt<'tcx>> for ty::Binder<'_, ty::FnSig<'_>> {
    fn from_cycle_error(tcx: TyCtxt<'tcx>, stack: &[QueryInfo]) -> Self {
        let err = tcx.ty_error();

        let arity = if let Some(frame) = stack.get(0)
            && frame.query.name == "fn_sig"
            && let Some(def_id) = frame.query.def_id
            && let Some(node) = tcx.hir().get_if_local(def_id)
            && let Some(sig) = node.fn_sig()
        {
            sig.decl.inputs.len() + sig.decl.implicit_self.has_implicit_self() as usize
        } else {
            tcx.sess.abort_if_errors();
            unreachable!()
        };

        let fn_sig = ty::Binder::dummy(tcx.mk_fn_sig(
            std::iter::repeat(err).take(arity),
            err,
            false,
            rustc_hir::Unsafety::Normal,
            rustc_target::spec::abi::Abi::Rust,
        ));

        // SAFETY: This is never called when `Self` is not `ty::Binder<'tcx, ty::FnSig<'tcx>>`.
        // FIXME: Represent the above fact in the trait system somehow.
        unsafe { std::mem::transmute::<ty::PolyFnSig<'tcx>, ty::Binder<'_, ty::FnSig<'_>>>(fn_sig) }
    }
}

impl<'tcx> Value<TyCtxt<'tcx>> for Representability {
    fn from_cycle_error(tcx: TyCtxt<'tcx>, cycle: &[QueryInfo]) -> Self {
        let mut item_and_field_ids = Vec::new();
        let mut representable_ids = FxHashSet::default();
        for info in cycle {
            if info.query.name == "representability"
                && let Some(field_id) = info.query.def_id
                && let Some(field_id) = field_id.as_local()
                && let Some(DefKind::Field) = info.query.def_kind
            {
                let parent_id = tcx.parent(field_id.to_def_id());
                let item_id = match tcx.def_kind(parent_id) {
                    DefKind::Variant => tcx.parent(parent_id),
                    _ => parent_id,
                };
                item_and_field_ids.push((item_id.expect_local(), field_id));
            }
        }
        for info in cycle {
            if info.query.name == "representability_adt_ty"
                && let Some(def_id) = info.query.ty_adt_id
                && let Some(def_id) = def_id.as_local()
                && !item_and_field_ids.iter().any(|&(id, _)| id == def_id)
            {
                representable_ids.insert(def_id);
            }
        }
        recursive_type_error(tcx, item_and_field_ids, &representable_ids);
        Representability::Infinite
    }
}

// item_and_field_ids should form a cycle where each field contains the
// type in the next element in the list
pub fn recursive_type_error(
    tcx: TyCtxt<'_>,
    mut item_and_field_ids: Vec<(LocalDefId, LocalDefId)>,
    representable_ids: &FxHashSet<LocalDefId>,
) {
    const ITEM_LIMIT: usize = 5;

    // Rotate the cycle so that the item with the lowest span is first
    let start_index = item_and_field_ids
        .iter()
        .enumerate()
        .min_by_key(|&(_, &(id, _))| tcx.def_span(id))
        .unwrap()
        .0;
    item_and_field_ids.rotate_left(start_index);

    let cycle_len = item_and_field_ids.len();
    let show_cycle_len = cycle_len.min(ITEM_LIMIT);

    let mut err_span = MultiSpan::from_spans(
        item_and_field_ids[..show_cycle_len]
            .iter()
            .map(|(id, _)| tcx.def_span(id.to_def_id()))
            .collect(),
    );
    let mut suggestion = Vec::with_capacity(show_cycle_len * 2);
    for i in 0..show_cycle_len {
        let (_, field_id) = item_and_field_ids[i];
        let (next_item_id, _) = item_and_field_ids[(i + 1) % cycle_len];
        // Find the span(s) that contain the next item in the cycle
        let hir_id = tcx.hir().local_def_id_to_hir_id(field_id);
        let hir::Node::Field(field) = tcx.hir().get(hir_id) else { bug!("expected field") };
        let mut found = Vec::new();
        find_item_ty_spans(tcx, field.ty, next_item_id, &mut found, representable_ids);

        // Couldn't find the type. Maybe it's behind a type alias?
        // In any case, we'll just suggest boxing the whole field.
        if found.is_empty() {
            found.push(field.ty.span);
        }

        for span in found {
            err_span.push_span_label(span, "recursive without indirection");
            // FIXME(compiler-errors): This suggestion might be erroneous if Box is shadowed
            suggestion.push((span.shrink_to_lo(), "Box<".to_string()));
            suggestion.push((span.shrink_to_hi(), ">".to_string()));
        }
    }
    let items_list = {
        let mut s = String::new();
        for (i, (item_id, _)) in item_and_field_ids.iter().enumerate() {
            let path = tcx.def_path_str(item_id.to_def_id());
            write!(&mut s, "`{path}`").unwrap();
            if i == (ITEM_LIMIT - 1) && cycle_len > ITEM_LIMIT {
                write!(&mut s, " and {} more", cycle_len - 5).unwrap();
                break;
            }
            if cycle_len > 1 && i < cycle_len - 2 {
                s.push_str(", ");
            } else if cycle_len > 1 && i == cycle_len - 2 {
                s.push_str(" and ")
            }
        }
        s
    };
    let mut err = struct_span_err!(
        tcx.sess,
        err_span,
        E0072,
        "recursive type{} {} {} infinite size",
        pluralize!(cycle_len),
        items_list,
        pluralize!("has", cycle_len),
    );
    err.multipart_suggestion(
        "insert some indirection (e.g., a `Box`, `Rc`, or `&`) to break the cycle",
        suggestion,
        Applicability::HasPlaceholders,
    );
    err.emit();
}

fn find_item_ty_spans(
    tcx: TyCtxt<'_>,
    ty: &hir::Ty<'_>,
    needle: LocalDefId,
    spans: &mut Vec<Span>,
    seen_representable: &FxHashSet<LocalDefId>,
) {
    match ty.kind {
        hir::TyKind::Path(hir::QPath::Resolved(_, path)) => {
            if let Some(def_id) = path.res.opt_def_id() {
                let check_params = def_id.as_local().map_or(true, |def_id| {
                    if def_id == needle {
                        spans.push(ty.span);
                    }
                    seen_representable.contains(&def_id)
                });
                if check_params && let Some(args) = path.segments.last().unwrap().args {
                    let params_in_repr = tcx.params_in_repr(def_id);
                    // the domain size check is needed because the HIR may not be well-formed at this point
                    for (i, arg) in args.args.iter().enumerate().take(params_in_repr.domain_size()) {
                        if let hir::GenericArg::Type(ty) = arg && params_in_repr.contains(i as u32) {
                            find_item_ty_spans(tcx, ty, needle, spans, seen_representable);
                        }
                    }
                }
            }
        }
        hir::TyKind::Array(ty, _) => find_item_ty_spans(tcx, ty, needle, spans, seen_representable),
        hir::TyKind::Tup(tys) => {
            tys.iter().for_each(|ty| find_item_ty_spans(tcx, ty, needle, spans, seen_representable))
        }
        _ => {}
    }
}