1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
use crate::errors::AutoDerefReachedRecursionLimit;
use crate::traits::query::evaluate_obligation::InferCtxtExt;
use crate::traits::NormalizeExt;
use crate::traits::{self, TraitEngine, TraitEngineExt};
use rustc_hir as hir;
use rustc_infer::infer::InferCtxt;
use rustc_middle::ty::TypeVisitable;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_session::Limit;
use rustc_span::def_id::LOCAL_CRATE;
use rustc_span::Span;

#[derive(Copy, Clone, Debug)]
pub enum AutoderefKind {
    Builtin,
    Overloaded,
}

struct AutoderefSnapshot<'tcx> {
    at_start: bool,
    reached_recursion_limit: bool,
    steps: Vec<(Ty<'tcx>, AutoderefKind)>,
    cur_ty: Ty<'tcx>,
    obligations: Vec<traits::PredicateObligation<'tcx>>,
}

pub struct Autoderef<'a, 'tcx> {
    // Meta infos:
    infcx: &'a InferCtxt<'tcx>,
    span: Span,
    body_id: hir::HirId,
    param_env: ty::ParamEnv<'tcx>,

    // Current state:
    state: AutoderefSnapshot<'tcx>,

    // Configurations:
    include_raw_pointers: bool,
    silence_errors: bool,
}

impl<'a, 'tcx> Iterator for Autoderef<'a, 'tcx> {
    type Item = (Ty<'tcx>, usize);

    fn next(&mut self) -> Option<Self::Item> {
        let tcx = self.infcx.tcx;

        debug!("autoderef: steps={:?}, cur_ty={:?}", self.state.steps, self.state.cur_ty);
        if self.state.at_start {
            self.state.at_start = false;
            debug!("autoderef stage #0 is {:?}", self.state.cur_ty);
            return Some((self.state.cur_ty, 0));
        }

        // If we have reached the recursion limit, error gracefully.
        if !tcx.recursion_limit().value_within_limit(self.state.steps.len()) {
            if !self.silence_errors {
                report_autoderef_recursion_limit_error(tcx, self.span, self.state.cur_ty);
            }
            self.state.reached_recursion_limit = true;
            return None;
        }

        if self.state.cur_ty.is_ty_var() {
            return None;
        }

        // Otherwise, deref if type is derefable:
        let (kind, new_ty) =
            if let Some(mt) = self.state.cur_ty.builtin_deref(self.include_raw_pointers) {
                (AutoderefKind::Builtin, mt.ty)
            } else if let Some(ty) = self.overloaded_deref_ty(self.state.cur_ty) {
                (AutoderefKind::Overloaded, ty)
            } else {
                return None;
            };

        if new_ty.references_error() {
            return None;
        }

        self.state.steps.push((self.state.cur_ty, kind));
        debug!(
            "autoderef stage #{:?} is {:?} from {:?}",
            self.step_count(),
            new_ty,
            (self.state.cur_ty, kind)
        );
        self.state.cur_ty = new_ty;

        Some((self.state.cur_ty, self.step_count()))
    }
}

impl<'a, 'tcx> Autoderef<'a, 'tcx> {
    pub fn new(
        infcx: &'a InferCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        body_id: hir::HirId,
        span: Span,
        base_ty: Ty<'tcx>,
    ) -> Autoderef<'a, 'tcx> {
        Autoderef {
            infcx,
            span,
            body_id,
            param_env,
            state: AutoderefSnapshot {
                steps: vec![],
                cur_ty: infcx.resolve_vars_if_possible(base_ty),
                obligations: vec![],
                at_start: true,
                reached_recursion_limit: false,
            },
            include_raw_pointers: false,
            silence_errors: false,
        }
    }

    fn overloaded_deref_ty(&mut self, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
        debug!("overloaded_deref_ty({:?})", ty);

        let tcx = self.infcx.tcx;

        // <ty as Deref>
        let trait_ref = tcx.mk_trait_ref(tcx.lang_items().deref_trait()?, [ty]);

        let cause = traits::ObligationCause::misc(self.span, self.body_id);

        let obligation = traits::Obligation::new(
            tcx,
            cause.clone(),
            self.param_env,
            ty::Binder::dummy(trait_ref),
        );
        if !self.infcx.predicate_may_hold(&obligation) {
            debug!("overloaded_deref_ty: cannot match obligation");
            return None;
        }

        let normalized_ty = self
            .infcx
            .at(&cause, self.param_env)
            .normalize(tcx.mk_projection(tcx.lang_items().deref_target()?, trait_ref.substs));
        let mut fulfillcx = <dyn TraitEngine<'tcx>>::new_in_snapshot(tcx);
        let normalized_ty =
            normalized_ty.into_value_registering_obligations(self.infcx, &mut *fulfillcx);
        let errors = fulfillcx.select_where_possible(&self.infcx);
        if !errors.is_empty() {
            // This shouldn't happen, except for evaluate/fulfill mismatches,
            // but that's not a reason for an ICE (`predicate_may_hold` is conservative
            // by design).
            debug!("overloaded_deref_ty: encountered errors {:?} while fulfilling", errors);
            return None;
        }
        let obligations = fulfillcx.pending_obligations();
        debug!("overloaded_deref_ty({:?}) = ({:?}, {:?})", ty, normalized_ty, obligations);
        self.state.obligations.extend(obligations);

        Some(self.infcx.resolve_vars_if_possible(normalized_ty))
    }

    /// Returns the final type we ended up with, which may be an inference
    /// variable (we will resolve it first, if we want).
    pub fn final_ty(&self, resolve: bool) -> Ty<'tcx> {
        if resolve {
            self.infcx.resolve_vars_if_possible(self.state.cur_ty)
        } else {
            self.state.cur_ty
        }
    }

    pub fn step_count(&self) -> usize {
        self.state.steps.len()
    }

    pub fn into_obligations(self) -> Vec<traits::PredicateObligation<'tcx>> {
        self.state.obligations
    }

    pub fn steps(&self) -> &[(Ty<'tcx>, AutoderefKind)] {
        &self.state.steps
    }

    pub fn span(&self) -> Span {
        self.span
    }

    pub fn reached_recursion_limit(&self) -> bool {
        self.state.reached_recursion_limit
    }

    /// also dereference through raw pointer types
    /// e.g., assuming ptr_to_Foo is the type `*const Foo`
    /// fcx.autoderef(span, ptr_to_Foo)  => [*const Foo]
    /// fcx.autoderef(span, ptr_to_Foo).include_raw_ptrs() => [*const Foo, Foo]
    pub fn include_raw_pointers(mut self) -> Self {
        self.include_raw_pointers = true;
        self
    }

    pub fn silence_errors(mut self) -> Self {
        self.silence_errors = true;
        self
    }
}

pub fn report_autoderef_recursion_limit_error<'tcx>(tcx: TyCtxt<'tcx>, span: Span, ty: Ty<'tcx>) {
    // We've reached the recursion limit, error gracefully.
    let suggested_limit = match tcx.recursion_limit() {
        Limit(0) => Limit(2),
        limit => limit * 2,
    };
    tcx.sess.emit_err(AutoDerefReachedRecursionLimit {
        span,
        ty,
        suggested_limit,
        crate_name: tcx.crate_name(LOCAL_CRATE),
    });
}