1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
use crate::coercion::CoerceMany;
use crate::gather_locals::GatherLocalsVisitor;
use crate::FnCtxt;
use crate::GeneratorTypes;
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::intravisit::Visitor;
use rustc_hir::lang_items::LangItem;
use rustc_hir_analysis::check::fn_maybe_err;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_infer::infer::RegionVariableOrigin;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_span::def_id::LocalDefId;
use rustc_trait_selection::traits;
use std::cell::RefCell;

/// Helper used for fns and closures. Does the grungy work of checking a function
/// body and returns the function context used for that purpose, since in the case of a fn item
/// there is still a bit more to do.
///
/// * ...
/// * inherited: other fields inherited from the enclosing fn (if any)
#[instrument(skip(fcx, body), level = "debug")]
pub(super) fn check_fn<'a, 'tcx>(
    fcx: &mut FnCtxt<'a, 'tcx>,
    fn_sig: ty::FnSig<'tcx>,
    decl: &'tcx hir::FnDecl<'tcx>,
    fn_def_id: LocalDefId,
    body: &'tcx hir::Body<'tcx>,
    can_be_generator: Option<hir::Movability>,
) -> Option<GeneratorTypes<'tcx>> {
    let fn_id = fcx.tcx.hir().local_def_id_to_hir_id(fn_def_id);

    let tcx = fcx.tcx;
    let hir = tcx.hir();

    let declared_ret_ty = fn_sig.output();

    let ret_ty =
        fcx.register_infer_ok_obligations(fcx.infcx.replace_opaque_types_with_inference_vars(
            declared_ret_ty,
            body.value.hir_id,
            decl.output.span(),
            fcx.param_env,
        ));

    fcx.ret_coercion = Some(RefCell::new(CoerceMany::new(ret_ty)));

    let span = body.value.span;

    fn_maybe_err(tcx, span, fn_sig.abi);

    if let Some(kind) = body.generator_kind && can_be_generator.is_some() {
        let yield_ty = if kind == hir::GeneratorKind::Gen {
            let yield_ty = fcx
                .next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::TypeInference, span });
            fcx.require_type_is_sized(yield_ty, span, traits::SizedYieldType);
            yield_ty
        } else {
            tcx.mk_unit()
        };

        // Resume type defaults to `()` if the generator has no argument.
        let resume_ty = fn_sig.inputs().get(0).copied().unwrap_or_else(|| tcx.mk_unit());

        fcx.resume_yield_tys = Some((resume_ty, yield_ty));
    }

    GatherLocalsVisitor::new(&fcx).visit_body(body);

    // C-variadic fns also have a `VaList` input that's not listed in `fn_sig`
    // (as it's created inside the body itself, not passed in from outside).
    let maybe_va_list = if fn_sig.c_variadic {
        let span = body.params.last().unwrap().span;
        let va_list_did = tcx.require_lang_item(LangItem::VaList, Some(span));
        let region = fcx.next_region_var(RegionVariableOrigin::MiscVariable(span));

        Some(tcx.bound_type_of(va_list_did).subst(tcx, &[region.into()]))
    } else {
        None
    };

    // Add formal parameters.
    let inputs_hir = hir.fn_decl_by_hir_id(fn_id).map(|decl| &decl.inputs);
    let inputs_fn = fn_sig.inputs().iter().copied();
    for (idx, (param_ty, param)) in inputs_fn.chain(maybe_va_list).zip(body.params).enumerate() {
        // Check the pattern.
        let ty_span = try { inputs_hir?.get(idx)?.span };
        fcx.check_pat_top(&param.pat, param_ty, ty_span, false);

        // Check that argument is Sized.
        // The check for a non-trivial pattern is a hack to avoid duplicate warnings
        // for simple cases like `fn foo(x: Trait)`,
        // where we would error once on the parameter as a whole, and once on the binding `x`.
        if param.pat.simple_ident().is_none() && !tcx.features().unsized_fn_params {
            fcx.require_type_is_sized(param_ty, param.pat.span, traits::SizedArgumentType(ty_span));
        }

        fcx.write_ty(param.hir_id, param_ty);
    }

    fcx.typeck_results.borrow_mut().liberated_fn_sigs_mut().insert(fn_id, fn_sig);

    if let ty::Dynamic(_, _, ty::Dyn) = declared_ret_ty.kind() {
        // FIXME: We need to verify that the return type is `Sized` after the return expression has
        // been evaluated so that we have types available for all the nodes being returned, but that
        // requires the coerced evaluated type to be stored. Moving `check_return_expr` before this
        // causes unsized errors caused by the `declared_ret_ty` to point at the return expression,
        // while keeping the current ordering we will ignore the tail expression's type because we
        // don't know it yet. We can't do `check_expr_kind` while keeping `check_return_expr`
        // because we will trigger "unreachable expression" lints unconditionally.
        // Because of all of this, we perform a crude check to know whether the simplest `!Sized`
        // case that a newcomer might make, returning a bare trait, and in that case we populate
        // the tail expression's type so that the suggestion will be correct, but ignore all other
        // possible cases.
        fcx.check_expr(&body.value);
        fcx.require_type_is_sized(declared_ret_ty, decl.output.span(), traits::SizedReturnType);
    } else {
        fcx.require_type_is_sized(declared_ret_ty, decl.output.span(), traits::SizedReturnType);
        fcx.check_return_expr(&body.value, false);
    }

    // We insert the deferred_generator_interiors entry after visiting the body.
    // This ensures that all nested generators appear before the entry of this generator.
    // resolve_generator_interiors relies on this property.
    let gen_ty = if let (Some(_), Some(gen_kind)) = (can_be_generator, body.generator_kind) {
        let interior = fcx
            .next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::MiscVariable, span });
        fcx.deferred_generator_interiors.borrow_mut().push((body.id(), interior, gen_kind));

        let (resume_ty, yield_ty) = fcx.resume_yield_tys.unwrap();
        Some(GeneratorTypes {
            resume_ty,
            yield_ty,
            interior,
            movability: can_be_generator.unwrap(),
        })
    } else {
        None
    };

    // Finalize the return check by taking the LUB of the return types
    // we saw and assigning it to the expected return type. This isn't
    // really expected to fail, since the coercions would have failed
    // earlier when trying to find a LUB.
    let coercion = fcx.ret_coercion.take().unwrap().into_inner();
    let mut actual_return_ty = coercion.complete(&fcx);
    debug!("actual_return_ty = {:?}", actual_return_ty);
    if let ty::Dynamic(..) = declared_ret_ty.kind() {
        // We have special-cased the case where the function is declared
        // `-> dyn Foo` and we don't actually relate it to the
        // `fcx.ret_coercion`, so just substitute a type variable.
        actual_return_ty =
            fcx.next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::DynReturnFn, span });
        debug!("actual_return_ty replaced with {:?}", actual_return_ty);
    }

    // HACK(oli-obk, compiler-errors): We should be comparing this against
    // `declared_ret_ty`, but then anything uninferred would be inferred to
    // the opaque type itself. That again would cause writeback to assume
    // we have a recursive call site and do the sadly stabilized fallback to `()`.
    fcx.demand_suptype(span, ret_ty, actual_return_ty);

    // Check that a function marked as `#[panic_handler]` has signature `fn(&PanicInfo) -> !`
    if let Some(panic_impl_did) = tcx.lang_items().panic_impl()
        && panic_impl_did == hir.local_def_id(fn_id).to_def_id()
    {
        check_panic_info_fn(tcx, panic_impl_did.expect_local(), fn_sig, decl, declared_ret_ty);
    }

    gen_ty
}

fn check_panic_info_fn(
    tcx: TyCtxt<'_>,
    fn_id: LocalDefId,
    fn_sig: ty::FnSig<'_>,
    decl: &hir::FnDecl<'_>,
    declared_ret_ty: Ty<'_>,
) {
    let Some(panic_info_did) = tcx.lang_items().panic_info() else {
        tcx.sess.err("language item required, but not found: `panic_info`");
        return;
    };

    if *declared_ret_ty.kind() != ty::Never {
        tcx.sess.span_err(decl.output.span(), "return type should be `!`");
    }

    let inputs = fn_sig.inputs();
    if inputs.len() != 1 {
        tcx.sess.span_err(tcx.def_span(fn_id), "function should have one argument");
        return;
    }

    let arg_is_panic_info = match *inputs[0].kind() {
        ty::Ref(region, ty, mutbl) => match *ty.kind() {
            ty::Adt(ref adt, _) => {
                adt.did() == panic_info_did && mutbl.is_not() && !region.is_static()
            }
            _ => false,
        },
        _ => false,
    };

    if !arg_is_panic_info {
        tcx.sess.span_err(decl.inputs[0].span, "argument should be `&PanicInfo`");
    }

    let DefKind::Fn = tcx.def_kind(fn_id) else {
        let span = tcx.def_span(fn_id);
        tcx.sess.span_err(span, "should be a function");
        return;
    };

    let generic_counts = tcx.generics_of(fn_id).own_counts();
    if generic_counts.types != 0 {
        let span = tcx.def_span(fn_id);
        tcx.sess.span_err(span, "should have no type parameters");
    }
    if generic_counts.consts != 0 {
        let span = tcx.def_span(fn_id);
        tcx.sess.span_err(span, "should have no const parameters");
    }
}