1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
use rustc_hir::lang_items::LangItem;
use rustc_middle::ty::{self, Region, RegionVid, TypeFoldable, TypeSuperFoldable};
use rustc_trait_selection::traits::auto_trait::{self, AutoTraitResult};
use thin_vec::ThinVec;
use std::fmt::Debug;
use super::*;
#[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
enum RegionTarget<'tcx> {
Region(Region<'tcx>),
RegionVid(RegionVid),
}
#[derive(Default, Debug, Clone)]
struct RegionDeps<'tcx> {
larger: FxHashSet<RegionTarget<'tcx>>,
smaller: FxHashSet<RegionTarget<'tcx>>,
}
pub(crate) struct AutoTraitFinder<'a, 'tcx> {
pub(crate) cx: &'a mut core::DocContext<'tcx>,
}
impl<'a, 'tcx> AutoTraitFinder<'a, 'tcx>
where
'tcx: 'a, // should be an implied bound; rustc bug #98852.
{
pub(crate) fn new(cx: &'a mut core::DocContext<'tcx>) -> Self {
AutoTraitFinder { cx }
}
fn generate_for_trait(
&mut self,
ty: Ty<'tcx>,
trait_def_id: DefId,
param_env: ty::ParamEnv<'tcx>,
item_def_id: DefId,
f: &auto_trait::AutoTraitFinder<'tcx>,
// If this is set, show only negative trait implementations, not positive ones.
discard_positive_impl: bool,
) -> Option<Item> {
let tcx = self.cx.tcx;
let trait_ref = ty::Binder::dummy(tcx.mk_trait_ref(trait_def_id, [ty]));
if !self.cx.generated_synthetics.insert((ty, trait_def_id)) {
debug!("get_auto_trait_impl_for({:?}): already generated, aborting", trait_ref);
return None;
}
let result = f.find_auto_trait_generics(ty, param_env, trait_def_id, |info| {
let region_data = info.region_data;
let names_map = tcx
.generics_of(item_def_id)
.params
.iter()
.filter_map(|param| match param.kind {
ty::GenericParamDefKind::Lifetime => Some(param.name),
_ => None,
})
.map(|name| (name, Lifetime(name)))
.collect();
let lifetime_predicates = Self::handle_lifetimes(®ion_data, &names_map);
let new_generics = self.param_env_to_generics(
item_def_id,
info.full_user_env,
lifetime_predicates,
info.vid_to_region,
);
debug!(
"find_auto_trait_generics(item_def_id={:?}, trait_def_id={:?}): \
finished with {:?}",
item_def_id, trait_def_id, new_generics
);
new_generics
});
let polarity;
let new_generics = match result {
AutoTraitResult::PositiveImpl(new_generics) => {
polarity = ty::ImplPolarity::Positive;
if discard_positive_impl {
return None;
}
new_generics
}
AutoTraitResult::NegativeImpl => {
polarity = ty::ImplPolarity::Negative;
// For negative impls, we use the generic params, but *not* the predicates,
// from the original type. Otherwise, the displayed impl appears to be a
// conditional negative impl, when it's really unconditional.
//
// For example, consider the struct Foo<T: Copy>(*mut T). Using
// the original predicates in our impl would cause us to generate
// `impl !Send for Foo<T: Copy>`, which makes it appear that Foo
// implements Send where T is not copy.
//
// Instead, we generate `impl !Send for Foo<T>`, which better
// expresses the fact that `Foo<T>` never implements `Send`,
// regardless of the choice of `T`.
let raw_generics = clean_ty_generics(
self.cx,
tcx.generics_of(item_def_id),
ty::GenericPredicates::default(),
);
let params = raw_generics.params;
Generics { params, where_predicates: ThinVec::new() }
}
AutoTraitResult::ExplicitImpl => return None,
};
Some(Item {
name: None,
attrs: Default::default(),
item_id: ItemId::Auto { trait_: trait_def_id, for_: item_def_id },
kind: Box::new(ImplItem(Box::new(Impl {
unsafety: hir::Unsafety::Normal,
generics: new_generics,
trait_: Some(clean_trait_ref_with_bindings(self.cx, trait_ref, ThinVec::new())),
for_: clean_middle_ty(ty::Binder::dummy(ty), self.cx, None),
items: Vec::new(),
polarity,
kind: ImplKind::Auto,
}))),
cfg: None,
inline_stmt_id: None,
})
}
pub(crate) fn get_auto_trait_impls(&mut self, item_def_id: DefId) -> Vec<Item> {
let tcx = self.cx.tcx;
let param_env = tcx.param_env(item_def_id);
let ty = tcx.type_of(item_def_id);
let f = auto_trait::AutoTraitFinder::new(tcx);
debug!("get_auto_trait_impls({:?})", ty);
let auto_traits: Vec<_> = self.cx.auto_traits.iter().copied().collect();
let mut auto_traits: Vec<Item> = auto_traits
.into_iter()
.filter_map(|trait_def_id| {
self.generate_for_trait(ty, trait_def_id, param_env, item_def_id, &f, false)
})
.collect();
// We are only interested in case the type *doesn't* implement the Sized trait.
if !ty.is_sized(tcx, param_env) {
// In case `#![no_core]` is used, `sized_trait` returns nothing.
if let Some(item) = tcx.lang_items().sized_trait().and_then(|sized_trait_did| {
self.generate_for_trait(ty, sized_trait_did, param_env, item_def_id, &f, true)
}) {
auto_traits.push(item);
}
}
auto_traits
}
fn get_lifetime(region: Region<'_>, names_map: &FxHashMap<Symbol, Lifetime>) -> Lifetime {
region_name(region)
.map(|name| {
names_map.get(&name).unwrap_or_else(|| {
panic!("Missing lifetime with name {:?} for {:?}", name.as_str(), region)
})
})
.unwrap_or(&Lifetime::statik())
.clone()
}
/// This method calculates two things: Lifetime constraints of the form `'a: 'b`,
/// and region constraints of the form `RegionVid: 'a`
///
/// This is essentially a simplified version of lexical_region_resolve. However,
/// handle_lifetimes determines what *needs be* true in order for an impl to hold.
/// lexical_region_resolve, along with much of the rest of the compiler, is concerned
/// with determining if a given set up constraints/predicates *are* met, given some
/// starting conditions (e.g., user-provided code). For this reason, it's easier
/// to perform the calculations we need on our own, rather than trying to make
/// existing inference/solver code do what we want.
fn handle_lifetimes<'cx>(
regions: &RegionConstraintData<'cx>,
names_map: &FxHashMap<Symbol, Lifetime>,
) -> ThinVec<WherePredicate> {
// Our goal is to 'flatten' the list of constraints by eliminating
// all intermediate RegionVids. At the end, all constraints should
// be between Regions (aka region variables). This gives us the information
// we need to create the Generics.
let mut finished: FxHashMap<_, Vec<_>> = Default::default();
let mut vid_map: FxHashMap<RegionTarget<'_>, RegionDeps<'_>> = Default::default();
// Flattening is done in two parts. First, we insert all of the constraints
// into a map. Each RegionTarget (either a RegionVid or a Region) maps
// to its smaller and larger regions. Note that 'larger' regions correspond
// to sub-regions in Rust code (e.g., in 'a: 'b, 'a is the larger region).
for constraint in regions.constraints.keys() {
match *constraint {
Constraint::VarSubVar(r1, r2) => {
{
let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
deps1.larger.insert(RegionTarget::RegionVid(r2));
}
let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
deps2.smaller.insert(RegionTarget::RegionVid(r1));
}
Constraint::RegSubVar(region, vid) => {
let deps = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
deps.smaller.insert(RegionTarget::Region(region));
}
Constraint::VarSubReg(vid, region) => {
let deps = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
deps.larger.insert(RegionTarget::Region(region));
}
Constraint::RegSubReg(r1, r2) => {
// The constraint is already in the form that we want, so we're done with it
// Desired order is 'larger, smaller', so flip then
if region_name(r1) != region_name(r2) {
finished
.entry(region_name(r2).expect("no region_name found"))
.or_default()
.push(r1);
}
}
}
}
// Here, we 'flatten' the map one element at a time.
// All of the element's sub and super regions are connected
// to each other. For example, if we have a graph that looks like this:
//
// (A, B) - C - (D, E)
// Where (A, B) are subregions, and (D,E) are super-regions
//
// then after deleting 'C', the graph will look like this:
// ... - A - (D, E ...)
// ... - B - (D, E, ...)
// (A, B, ...) - D - ...
// (A, B, ...) - E - ...
//
// where '...' signifies the existing sub and super regions of an entry
// When two adjacent ty::Regions are encountered, we've computed a final
// constraint, and add it to our list. Since we make sure to never re-add
// deleted items, this process will always finish.
while !vid_map.is_empty() {
let target = *vid_map.keys().next().expect("Keys somehow empty");
let deps = vid_map.remove(&target).expect("Entry somehow missing");
for smaller in deps.smaller.iter() {
for larger in deps.larger.iter() {
match (smaller, larger) {
(&RegionTarget::Region(r1), &RegionTarget::Region(r2)) => {
if region_name(r1) != region_name(r2) {
finished
.entry(region_name(r2).expect("no region name found"))
.or_default()
.push(r1) // Larger, smaller
}
}
(&RegionTarget::RegionVid(_), &RegionTarget::Region(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
}
(&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let deps = v.into_mut();
deps.smaller.insert(*smaller);
deps.smaller.remove(&target);
}
}
(&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let larger_deps = v.into_mut();
larger_deps.smaller.insert(*smaller);
larger_deps.smaller.remove(&target);
}
}
}
}
}
}
let lifetime_predicates = names_map
.iter()
.flat_map(|(name, lifetime)| {
let empty = Vec::new();
let bounds: FxHashSet<GenericBound> = finished
.get(name)
.unwrap_or(&empty)
.iter()
.map(|region| GenericBound::Outlives(Self::get_lifetime(*region, names_map)))
.collect();
if bounds.is_empty() {
return None;
}
Some(WherePredicate::RegionPredicate {
lifetime: lifetime.clone(),
bounds: bounds.into_iter().collect(),
})
})
.collect();
lifetime_predicates
}
fn extract_for_generics(&self, pred: ty::Predicate<'tcx>) -> FxHashSet<GenericParamDef> {
let bound_predicate = pred.kind();
let tcx = self.cx.tcx;
let regions = match bound_predicate.skip_binder() {
ty::PredicateKind::Clause(ty::Clause::Trait(poly_trait_pred)) => {
tcx.collect_referenced_late_bound_regions(&bound_predicate.rebind(poly_trait_pred))
}
ty::PredicateKind::Clause(ty::Clause::Projection(poly_proj_pred)) => {
tcx.collect_referenced_late_bound_regions(&bound_predicate.rebind(poly_proj_pred))
}
_ => return FxHashSet::default(),
};
regions
.into_iter()
.filter_map(|br| {
match br {
// We only care about named late bound regions, as we need to add them
// to the 'for<>' section
ty::BrNamed(_, name) => Some(GenericParamDef::lifetime(name)),
_ => None,
}
})
.collect()
}
fn make_final_bounds(
&self,
ty_to_bounds: FxHashMap<Type, FxHashSet<GenericBound>>,
ty_to_fn: FxHashMap<Type, (PolyTrait, Option<Type>)>,
lifetime_to_bounds: FxHashMap<Lifetime, FxHashSet<GenericBound>>,
) -> Vec<WherePredicate> {
ty_to_bounds
.into_iter()
.flat_map(|(ty, mut bounds)| {
if let Some((ref poly_trait, ref output)) = ty_to_fn.get(&ty) {
let mut new_path = poly_trait.trait_.clone();
let last_segment = new_path.segments.pop().expect("segments were empty");
let (old_input, old_output) = match last_segment.args {
GenericArgs::AngleBracketed { args, .. } => {
let types = args
.iter()
.filter_map(|arg| match arg {
GenericArg::Type(ty) => Some(ty.clone()),
_ => None,
})
.collect();
(types, None)
}
GenericArgs::Parenthesized { inputs, output } => (inputs, output),
};
let output = output.as_ref().cloned().map(Box::new);
if old_output.is_some() && old_output != output {
panic!("Output mismatch for {:?} {:?} {:?}", ty, old_output, output);
}
let new_params = GenericArgs::Parenthesized { inputs: old_input, output };
new_path
.segments
.push(PathSegment { name: last_segment.name, args: new_params });
bounds.insert(GenericBound::TraitBound(
PolyTrait {
trait_: new_path,
generic_params: poly_trait.generic_params.clone(),
},
hir::TraitBoundModifier::None,
));
}
if bounds.is_empty() {
return None;
}
let mut bounds_vec = bounds.into_iter().collect();
self.sort_where_bounds(&mut bounds_vec);
Some(WherePredicate::BoundPredicate {
ty,
bounds: bounds_vec,
bound_params: Vec::new(),
})
})
.chain(
lifetime_to_bounds.into_iter().filter(|&(_, ref bounds)| !bounds.is_empty()).map(
|(lifetime, bounds)| {
let mut bounds_vec = bounds.into_iter().collect();
self.sort_where_bounds(&mut bounds_vec);
WherePredicate::RegionPredicate { lifetime, bounds: bounds_vec }
},
),
)
.collect()
}
/// Converts the calculated `ParamEnv` and lifetime information to a [`clean::Generics`](Generics), suitable for
/// display on the docs page. Cleaning the `Predicates` produces sub-optimal [`WherePredicate`]s,
/// so we fix them up:
///
/// * Multiple bounds for the same type are coalesced into one: e.g., `T: Copy`, `T: Debug`
/// becomes `T: Copy + Debug`
/// * `Fn` bounds are handled specially - instead of leaving it as `T: Fn(), <T as Fn::Output> =
/// K`, we use the dedicated syntax `T: Fn() -> K`
/// * We explicitly add a `?Sized` bound if we didn't find any `Sized` predicates for a type
fn param_env_to_generics(
&mut self,
item_def_id: DefId,
param_env: ty::ParamEnv<'tcx>,
mut existing_predicates: ThinVec<WherePredicate>,
vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
) -> Generics {
debug!(
"param_env_to_generics(item_def_id={:?}, param_env={:?}, \
existing_predicates={:?})",
item_def_id, param_env, existing_predicates
);
let tcx = self.cx.tcx;
// The `Sized` trait must be handled specially, since we only display it when
// it is *not* required (i.e., '?Sized')
let sized_trait = tcx.require_lang_item(LangItem::Sized, None);
let mut replacer = RegionReplacer { vid_to_region: &vid_to_region, tcx };
let orig_bounds: FxHashSet<_> = tcx.param_env(item_def_id).caller_bounds().iter().collect();
let clean_where_predicates = param_env
.caller_bounds()
.iter()
.filter(|p| {
!orig_bounds.contains(p)
|| match p.kind().skip_binder() {
ty::PredicateKind::Clause(ty::Clause::Trait(pred)) => {
pred.def_id() == sized_trait
}
_ => false,
}
})
.map(|p| p.fold_with(&mut replacer));
let raw_generics = clean_ty_generics(
self.cx,
tcx.generics_of(item_def_id),
tcx.explicit_predicates_of(item_def_id),
);
let mut generic_params = raw_generics.params;
debug!("param_env_to_generics({:?}): generic_params={:?}", item_def_id, generic_params);
let mut has_sized = FxHashSet::default();
let mut ty_to_bounds: FxHashMap<_, FxHashSet<_>> = Default::default();
let mut lifetime_to_bounds: FxHashMap<_, FxHashSet<_>> = Default::default();
let mut ty_to_traits: FxHashMap<Type, FxHashSet<Path>> = Default::default();
let mut ty_to_fn: FxHashMap<Type, (PolyTrait, Option<Type>)> = Default::default();
// FIXME: This code shares much of the logic found in `clean_ty_generics` and
// `simplify::where_clause`. Consider deduplicating it to avoid diverging
// implementations.
// Further, the code below does not merge (partially re-sugared) bounds like
// `Tr<A = T>` & `Tr<B = U>` and it does not render higher-ranked parameters
// originating from equality predicates.
for p in clean_where_predicates {
let (orig_p, p) = (p, clean_predicate(p, self.cx));
if p.is_none() {
continue;
}
let p = p.unwrap();
match p {
WherePredicate::BoundPredicate { ty, mut bounds, .. } => {
// Writing a projection trait bound of the form
// <T as Trait>::Name : ?Sized
// is illegal, because ?Sized bounds can only
// be written in the (here, nonexistent) definition
// of the type.
// Therefore, we make sure that we never add a ?Sized
// bound for projections
if let Type::QPath { .. } = ty {
has_sized.insert(ty.clone());
}
if bounds.is_empty() {
continue;
}
let mut for_generics = self.extract_for_generics(orig_p);
assert!(bounds.len() == 1);
let mut b = bounds.pop().expect("bounds were empty");
if b.is_sized_bound(self.cx) {
has_sized.insert(ty.clone());
} else if !b
.get_trait_path()
.and_then(|trait_| {
ty_to_traits
.get(&ty)
.map(|bounds| bounds.contains(&strip_path_generics(trait_)))
})
.unwrap_or(false)
{
// If we've already added a projection bound for the same type, don't add
// this, as it would be a duplicate
// Handle any 'Fn/FnOnce/FnMut' bounds specially,
// as we want to combine them with any 'Output' qpaths
// later
let is_fn = match b {
GenericBound::TraitBound(ref mut p, _) => {
// Insert regions into the for_generics hash map first, to ensure
// that we don't end up with duplicate bounds (e.g., for<'b, 'b>)
for_generics.extend(p.generic_params.drain(..));
p.generic_params.extend(for_generics);
self.is_fn_trait(&p.trait_)
}
_ => false,
};
let poly_trait = b.get_poly_trait().expect("Cannot get poly trait");
if is_fn {
ty_to_fn
.entry(ty.clone())
.and_modify(|e| *e = (poly_trait.clone(), e.1.clone()))
.or_insert(((poly_trait.clone()), None));
ty_to_bounds.entry(ty.clone()).or_default();
} else {
ty_to_bounds.entry(ty.clone()).or_default().insert(b.clone());
}
}
}
WherePredicate::RegionPredicate { lifetime, bounds } => {
lifetime_to_bounds.entry(lifetime).or_default().extend(bounds);
}
WherePredicate::EqPredicate { lhs, rhs, bound_params } => {
match *lhs {
Type::QPath(box QPathData {
ref assoc, ref self_type, ref trait_, ..
}) => {
let ty = &*self_type;
let mut new_trait = trait_.clone();
if self.is_fn_trait(trait_) && assoc.name == sym::Output {
ty_to_fn
.entry(ty.clone())
.and_modify(|e| {
*e = (e.0.clone(), Some(rhs.ty().unwrap().clone()))
})
.or_insert((
PolyTrait {
trait_: trait_.clone(),
generic_params: Vec::new(),
},
Some(rhs.ty().unwrap().clone()),
));
continue;
}
let args = &mut new_trait
.segments
.last_mut()
.expect("segments were empty")
.args;
match args {
// Convert something like '<T as Iterator::Item> = u8'
// to 'T: Iterator<Item=u8>'
GenericArgs::AngleBracketed { ref mut bindings, .. } => {
bindings.push(TypeBinding {
assoc: assoc.clone(),
kind: TypeBindingKind::Equality { term: *rhs },
});
}
GenericArgs::Parenthesized { .. } => {
existing_predicates.push(WherePredicate::EqPredicate {
lhs: lhs.clone(),
rhs,
bound_params,
});
continue; // If something other than a Fn ends up
// with parentheses, leave it alone
}
}
let bounds = ty_to_bounds.entry(ty.clone()).or_default();
bounds.insert(GenericBound::TraitBound(
PolyTrait { trait_: new_trait, generic_params: Vec::new() },
hir::TraitBoundModifier::None,
));
// Remove any existing 'plain' bound (e.g., 'T: Iterator`) so
// that we don't see a
// duplicate bound like `T: Iterator + Iterator<Item=u8>`
// on the docs page.
bounds.remove(&GenericBound::TraitBound(
PolyTrait { trait_: trait_.clone(), generic_params: Vec::new() },
hir::TraitBoundModifier::None,
));
// Avoid creating any new duplicate bounds later in the outer
// loop
ty_to_traits.entry(ty.clone()).or_default().insert(trait_.clone());
}
_ => panic!("Unexpected LHS {:?} for {:?}", lhs, item_def_id),
}
}
};
}
let final_bounds = self.make_final_bounds(ty_to_bounds, ty_to_fn, lifetime_to_bounds);
existing_predicates.extend(final_bounds);
for param in generic_params.iter_mut() {
match param.kind {
GenericParamDefKind::Type { ref mut default, ref mut bounds, .. } => {
// We never want something like `impl<T=Foo>`.
default.take();
let generic_ty = Type::Generic(param.name);
if !has_sized.contains(&generic_ty) {
bounds.insert(0, GenericBound::maybe_sized(self.cx));
}
}
GenericParamDefKind::Lifetime { .. } => {}
GenericParamDefKind::Const { ref mut default, .. } => {
// We never want something like `impl<const N: usize = 10>`
default.take();
}
}
}
self.sort_where_predicates(&mut existing_predicates);
Generics { params: generic_params, where_predicates: existing_predicates }
}
/// Ensure that the predicates are in a consistent order. The precise
/// ordering doesn't actually matter, but it's important that
/// a given set of predicates always appears in the same order -
/// both for visual consistency between 'rustdoc' runs, and to
/// make writing tests much easier
#[inline]
fn sort_where_predicates(&self, predicates: &mut [WherePredicate]) {
// We should never have identical bounds - and if we do,
// they're visually identical as well. Therefore, using
// an unstable sort is fine.
self.unstable_debug_sort(predicates);
}
/// Ensure that the bounds are in a consistent order. The precise
/// ordering doesn't actually matter, but it's important that
/// a given set of bounds always appears in the same order -
/// both for visual consistency between 'rustdoc' runs, and to
/// make writing tests much easier
#[inline]
fn sort_where_bounds(&self, bounds: &mut Vec<GenericBound>) {
// We should never have identical bounds - and if we do,
// they're visually identical as well. Therefore, using
// an unstable sort is fine.
self.unstable_debug_sort(bounds);
}
/// This might look horrendously hacky, but it's actually not that bad.
///
/// For performance reasons, we use several different FxHashMaps
/// in the process of computing the final set of where predicates.
/// However, the iteration order of a HashMap is completely unspecified.
/// In fact, the iteration of an FxHashMap can even vary between platforms,
/// since FxHasher has different behavior for 32-bit and 64-bit platforms.
///
/// Obviously, it's extremely undesirable for documentation rendering
/// to be dependent on the platform it's run on. Apart from being confusing
/// to end users, it makes writing tests much more difficult, as predicates
/// can appear in any order in the final result.
///
/// To solve this problem, we sort WherePredicates and GenericBounds
/// by their Debug string. The thing to keep in mind is that we don't really
/// care what the final order is - we're synthesizing an impl or bound
/// ourselves, so any order can be considered equally valid. By sorting the
/// predicates and bounds, however, we ensure that for a given codebase, all
/// auto-trait impls always render in exactly the same way.
///
/// Using the Debug implementation for sorting prevents us from needing to
/// write quite a bit of almost entirely useless code (e.g., how should two
/// Types be sorted relative to each other). It also allows us to solve the
/// problem for both WherePredicates and GenericBounds at the same time. This
/// approach is probably somewhat slower, but the small number of items
/// involved (impls rarely have more than a few bounds) means that it
/// shouldn't matter in practice.
fn unstable_debug_sort<T: Debug>(&self, vec: &mut [T]) {
vec.sort_by_cached_key(|x| format!("{:?}", x))
}
fn is_fn_trait(&self, path: &Path) -> bool {
let tcx = self.cx.tcx;
let did = path.def_id();
did == tcx.require_lang_item(LangItem::Fn, None)
|| did == tcx.require_lang_item(LangItem::FnMut, None)
|| did == tcx.require_lang_item(LangItem::FnOnce, None)
}
}
fn region_name(region: Region<'_>) -> Option<Symbol> {
match *region {
ty::ReEarlyBound(r) => Some(r.name),
_ => None,
}
}
/// Replaces all [`ty::RegionVid`]s in a type with [`ty::Region`]s, using the provided map.
struct RegionReplacer<'a, 'tcx> {
vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
tcx: TyCtxt<'tcx>,
}
impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
(match *r {
ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned(),
_ => None,
})
.unwrap_or_else(|| r.super_fold_with(self))
}
}