1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
#![allow(rustc::usage_of_ty_tykind)]

use std::cmp::Ordering;
use std::{fmt, hash};

use crate::DebruijnIndex;
use crate::FloatTy;
use crate::HashStableContext;
use crate::IntTy;
use crate::Interner;
use crate::TyDecoder;
use crate::TyEncoder;
use crate::UintTy;

use self::RegionKind::*;
use self::TyKind::*;

use rustc_data_structures::stable_hasher::HashStable;
use rustc_serialize::{Decodable, Decoder, Encodable};

/// Specifies how a trait object is represented.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum DynKind {
    /// An unsized `dyn Trait` object
    Dyn,
    /// A sized `dyn* Trait` object
    ///
    /// These objects are represented as a `(data, vtable)` pair where `data` is a ptr-sized value
    /// (often a pointer to the real object, but not necessarily) and `vtable` is a pointer to
    /// the vtable for `dyn* Trait`. The representation is essentially the same as `&dyn Trait`
    /// or similar, but the drop function included in the vtable is responsible for freeing the
    /// underlying storage if needed. This allows a `dyn*` object to be treated agnostically with
    /// respect to whether it points to a `Box<T>`, `Rc<T>`, etc.
    DynStar,
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum AliasKind {
    Projection,
    Opaque,
}

/// Defines the kinds of types used by the type system.
///
/// Types written by the user start out as `hir::TyKind` and get
/// converted to this representation using `AstConv::ast_ty_to_ty`.
#[rustc_diagnostic_item = "IrTyKind"]
pub enum TyKind<I: Interner> {
    /// The primitive boolean type. Written as `bool`.
    Bool,

    /// The primitive character type; holds a Unicode scalar value
    /// (a non-surrogate code point). Written as `char`.
    Char,

    /// A primitive signed integer type. For example, `i32`.
    Int(IntTy),

    /// A primitive unsigned integer type. For example, `u32`.
    Uint(UintTy),

    /// A primitive floating-point type. For example, `f64`.
    Float(FloatTy),

    /// Algebraic data types (ADT). For example: structures, enumerations and unions.
    ///
    /// For example, the type `List<i32>` would be represented using the `AdtDef`
    /// for `struct List<T>` and the substs `[i32]`.
    ///
    /// Note that generic parameters in fields only get lazily substituted
    /// by using something like `adt_def.all_fields().map(|field| field.ty(tcx, substs))`.
    Adt(I::AdtDef, I::SubstsRef),

    /// An unsized FFI type that is opaque to Rust. Written as `extern type T`.
    Foreign(I::DefId),

    /// The pointee of a string slice. Written as `str`.
    Str,

    /// An array with the given length. Written as `[T; N]`.
    Array(I::Ty, I::Const),

    /// The pointee of an array slice. Written as `[T]`.
    Slice(I::Ty),

    /// A raw pointer. Written as `*mut T` or `*const T`
    RawPtr(I::TypeAndMut),

    /// A reference; a pointer with an associated lifetime. Written as
    /// `&'a mut T` or `&'a T`.
    Ref(I::Region, I::Ty, I::Mutability),

    /// The anonymous type of a function declaration/definition. Each
    /// function has a unique type.
    ///
    /// For the function `fn foo() -> i32 { 3 }` this type would be
    /// shown to the user as `fn() -> i32 {foo}`.
    ///
    /// For example the type of `bar` here:
    /// ```rust
    /// fn foo() -> i32 { 1 }
    /// let bar = foo; // bar: fn() -> i32 {foo}
    /// ```
    FnDef(I::DefId, I::SubstsRef),

    /// A pointer to a function. Written as `fn() -> i32`.
    ///
    /// Note that both functions and closures start out as either
    /// [FnDef] or [Closure] which can be then be coerced to this variant.
    ///
    /// For example the type of `bar` here:
    ///
    /// ```rust
    /// fn foo() -> i32 { 1 }
    /// let bar: fn() -> i32 = foo;
    /// ```
    FnPtr(I::PolyFnSig),

    /// A trait object. Written as `dyn for<'b> Trait<'b, Assoc = u32> + Send + 'a`.
    Dynamic(I::ListBinderExistentialPredicate, I::Region, DynKind),

    /// The anonymous type of a closure. Used to represent the type of `|a| a`.
    ///
    /// Closure substs contain both the - potentially substituted - generic parameters
    /// of its parent and some synthetic parameters. See the documentation for
    /// `ClosureSubsts` for more details.
    Closure(I::DefId, I::SubstsRef),

    /// The anonymous type of a generator. Used to represent the type of
    /// `|a| yield a`.
    ///
    /// For more info about generator substs, visit the documentation for
    /// `GeneratorSubsts`.
    Generator(I::DefId, I::SubstsRef, I::Movability),

    /// A type representing the types stored inside a generator.
    /// This should only appear as part of the `GeneratorSubsts`.
    ///
    /// Note that the captured variables for generators are stored separately
    /// using a tuple in the same way as for closures.
    ///
    /// Unlike upvars, the witness can reference lifetimes from
    /// inside of the generator itself. To deal with them in
    /// the type of the generator, we convert them to higher ranked
    /// lifetimes bound by the witness itself.
    ///
    /// Looking at the following example, the witness for this generator
    /// may end up as something like `for<'a> [Vec<i32>, &'a Vec<i32>]`:
    ///
    /// ```ignore UNSOLVED (ask @compiler-errors, should this error? can we just swap the yields?)
    /// #![feature(generators)]
    /// |a| {
    ///     let x = &vec![3];
    ///     yield a;
    ///     yield x[0];
    /// }
    /// # ;
    /// ```
    GeneratorWitness(I::BinderListTy),

    /// The never type `!`.
    Never,

    /// A tuple type. For example, `(i32, bool)`.
    Tuple(I::ListTy),

    /// A projection or opaque type. Both of these types
    Alias(AliasKind, I::AliasTy),

    /// A type parameter; for example, `T` in `fn f<T>(x: T) {}`.
    Param(I::ParamTy),

    /// Bound type variable, used to represent the `'a` in `for<'a> fn(&'a ())`.
    ///
    /// For canonical queries, we replace inference variables with bound variables,
    /// so e.g. when checking whether `&'_ (): Trait<_>` holds, we canonicalize that to
    /// `for<'a, T> &'a (): Trait<T>` and then convert the introduced bound variables
    /// back to inference variables in a new inference context when inside of the query.
    ///
    /// See the `rustc-dev-guide` for more details about
    /// [higher-ranked trait bounds][1] and [canonical queries][2].
    ///
    /// [1]: https://rustc-dev-guide.rust-lang.org/traits/hrtb.html
    /// [2]: https://rustc-dev-guide.rust-lang.org/traits/canonical-queries.html
    Bound(DebruijnIndex, I::BoundTy),

    /// A placeholder type, used during higher ranked subtyping to instantiate
    /// bound variables.
    Placeholder(I::PlaceholderType),

    /// A type variable used during type checking.
    ///
    /// Similar to placeholders, inference variables also live in a universe to
    /// correctly deal with higher ranked types. Though unlike placeholders,
    /// that universe is stored in the `InferCtxt` instead of directly
    /// inside of the type.
    Infer(I::InferTy),

    /// A placeholder for a type which could not be computed; this is
    /// propagated to avoid useless error messages.
    Error(I::ErrorGuaranteed),
}

impl<I: Interner> TyKind<I> {
    #[inline]
    pub fn is_primitive(&self) -> bool {
        matches!(self, Bool | Char | Int(_) | Uint(_) | Float(_))
    }
}

// This is manually implemented for `TyKind` because `std::mem::discriminant`
// returns an opaque value that is `PartialEq` but not `PartialOrd`
#[inline]
const fn tykind_discriminant<I: Interner>(value: &TyKind<I>) -> usize {
    match value {
        Bool => 0,
        Char => 1,
        Int(_) => 2,
        Uint(_) => 3,
        Float(_) => 4,
        Adt(_, _) => 5,
        Foreign(_) => 6,
        Str => 7,
        Array(_, _) => 8,
        Slice(_) => 9,
        RawPtr(_) => 10,
        Ref(_, _, _) => 11,
        FnDef(_, _) => 12,
        FnPtr(_) => 13,
        Dynamic(..) => 14,
        Closure(_, _) => 15,
        Generator(_, _, _) => 16,
        GeneratorWitness(_) => 17,
        Never => 18,
        Tuple(_) => 19,
        Alias(_, _) => 20,
        Param(_) => 21,
        Bound(_, _) => 22,
        Placeholder(_) => 23,
        Infer(_) => 24,
        Error(_) => 25,
    }
}

// This is manually implemented because a derive would require `I: Clone`
impl<I: Interner> Clone for TyKind<I> {
    fn clone(&self) -> Self {
        match self {
            Bool => Bool,
            Char => Char,
            Int(i) => Int(*i),
            Uint(u) => Uint(*u),
            Float(f) => Float(*f),
            Adt(d, s) => Adt(d.clone(), s.clone()),
            Foreign(d) => Foreign(d.clone()),
            Str => Str,
            Array(t, c) => Array(t.clone(), c.clone()),
            Slice(t) => Slice(t.clone()),
            RawPtr(t) => RawPtr(t.clone()),
            Ref(r, t, m) => Ref(r.clone(), t.clone(), m.clone()),
            FnDef(d, s) => FnDef(d.clone(), s.clone()),
            FnPtr(s) => FnPtr(s.clone()),
            Dynamic(p, r, repr) => Dynamic(p.clone(), r.clone(), *repr),
            Closure(d, s) => Closure(d.clone(), s.clone()),
            Generator(d, s, m) => Generator(d.clone(), s.clone(), m.clone()),
            GeneratorWitness(g) => GeneratorWitness(g.clone()),
            Never => Never,
            Tuple(t) => Tuple(t.clone()),
            Alias(k, p) => Alias(*k, p.clone()),
            Param(p) => Param(p.clone()),
            Bound(d, b) => Bound(*d, b.clone()),
            Placeholder(p) => Placeholder(p.clone()),
            Infer(t) => Infer(t.clone()),
            Error(e) => Error(e.clone()),
        }
    }
}

// This is manually implemented because a derive would require `I: PartialEq`
impl<I: Interner> PartialEq for TyKind<I> {
    #[inline]
    fn eq(&self, other: &TyKind<I>) -> bool {
        tykind_discriminant(self) == tykind_discriminant(other)
            && match (self, other) {
                (Int(a_i), Int(b_i)) => a_i == b_i,
                (Uint(a_u), Uint(b_u)) => a_u == b_u,
                (Float(a_f), Float(b_f)) => a_f == b_f,
                (Adt(a_d, a_s), Adt(b_d, b_s)) => a_d == b_d && a_s == b_s,
                (Foreign(a_d), Foreign(b_d)) => a_d == b_d,
                (Array(a_t, a_c), Array(b_t, b_c)) => a_t == b_t && a_c == b_c,
                (Slice(a_t), Slice(b_t)) => a_t == b_t,
                (RawPtr(a_t), RawPtr(b_t)) => a_t == b_t,
                (Ref(a_r, a_t, a_m), Ref(b_r, b_t, b_m)) => a_r == b_r && a_t == b_t && a_m == b_m,
                (FnDef(a_d, a_s), FnDef(b_d, b_s)) => a_d == b_d && a_s == b_s,
                (FnPtr(a_s), FnPtr(b_s)) => a_s == b_s,
                (Dynamic(a_p, a_r, a_repr), Dynamic(b_p, b_r, b_repr)) => {
                    a_p == b_p && a_r == b_r && a_repr == b_repr
                }
                (Closure(a_d, a_s), Closure(b_d, b_s)) => a_d == b_d && a_s == b_s,
                (Generator(a_d, a_s, a_m), Generator(b_d, b_s, b_m)) => {
                    a_d == b_d && a_s == b_s && a_m == b_m
                }
                (GeneratorWitness(a_g), GeneratorWitness(b_g)) => a_g == b_g,
                (Tuple(a_t), Tuple(b_t)) => a_t == b_t,
                (Alias(a_i, a_p), Alias(b_i, b_p)) => a_i == b_i && a_p == b_p,
                (Param(a_p), Param(b_p)) => a_p == b_p,
                (Bound(a_d, a_b), Bound(b_d, b_b)) => a_d == b_d && a_b == b_b,
                (Placeholder(a_p), Placeholder(b_p)) => a_p == b_p,
                (Infer(a_t), Infer(b_t)) => a_t == b_t,
                (Error(a_e), Error(b_e)) => a_e == b_e,
                (Bool, Bool) | (Char, Char) | (Str, Str) | (Never, Never) => true,
                _ => {
                    debug_assert!(
                        false,
                        "This branch must be unreachable, maybe the match is missing an arm? self = self = {self:?}, other = {other:?}"
                    );
                    true
                }
            }
    }
}

// This is manually implemented because a derive would require `I: Eq`
impl<I: Interner> Eq for TyKind<I> {}

// This is manually implemented because a derive would require `I: PartialOrd`
impl<I: Interner> PartialOrd for TyKind<I> {
    #[inline]
    fn partial_cmp(&self, other: &TyKind<I>) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

// This is manually implemented because a derive would require `I: Ord`
impl<I: Interner> Ord for TyKind<I> {
    #[inline]
    fn cmp(&self, other: &TyKind<I>) -> Ordering {
        tykind_discriminant(self).cmp(&tykind_discriminant(other)).then_with(|| {
            match (self, other) {
                (Int(a_i), Int(b_i)) => a_i.cmp(b_i),
                (Uint(a_u), Uint(b_u)) => a_u.cmp(b_u),
                (Float(a_f), Float(b_f)) => a_f.cmp(b_f),
                (Adt(a_d, a_s), Adt(b_d, b_s)) => a_d.cmp(b_d).then_with(|| a_s.cmp(b_s)),
                (Foreign(a_d), Foreign(b_d)) => a_d.cmp(b_d),
                (Array(a_t, a_c), Array(b_t, b_c)) => a_t.cmp(b_t).then_with(|| a_c.cmp(b_c)),
                (Slice(a_t), Slice(b_t)) => a_t.cmp(b_t),
                (RawPtr(a_t), RawPtr(b_t)) => a_t.cmp(b_t),
                (Ref(a_r, a_t, a_m), Ref(b_r, b_t, b_m)) => {
                    a_r.cmp(b_r).then_with(|| a_t.cmp(b_t).then_with(|| a_m.cmp(b_m)))
                }
                (FnDef(a_d, a_s), FnDef(b_d, b_s)) => a_d.cmp(b_d).then_with(|| a_s.cmp(b_s)),
                (FnPtr(a_s), FnPtr(b_s)) => a_s.cmp(b_s),
                (Dynamic(a_p, a_r, a_repr), Dynamic(b_p, b_r, b_repr)) => {
                    a_p.cmp(b_p).then_with(|| a_r.cmp(b_r).then_with(|| a_repr.cmp(b_repr)))
                }
                (Closure(a_p, a_s), Closure(b_p, b_s)) => a_p.cmp(b_p).then_with(|| a_s.cmp(b_s)),
                (Generator(a_d, a_s, a_m), Generator(b_d, b_s, b_m)) => {
                    a_d.cmp(b_d).then_with(|| a_s.cmp(b_s).then_with(|| a_m.cmp(b_m)))
                }
                (GeneratorWitness(a_g), GeneratorWitness(b_g)) => a_g.cmp(b_g),
                (Tuple(a_t), Tuple(b_t)) => a_t.cmp(b_t),
                (Alias(a_i, a_p), Alias(b_i, b_p)) => a_i.cmp(b_i).then_with(|| a_p.cmp(b_p)),
                (Param(a_p), Param(b_p)) => a_p.cmp(b_p),
                (Bound(a_d, a_b), Bound(b_d, b_b)) => a_d.cmp(b_d).then_with(|| a_b.cmp(b_b)),
                (Placeholder(a_p), Placeholder(b_p)) => a_p.cmp(b_p),
                (Infer(a_t), Infer(b_t)) => a_t.cmp(b_t),
                (Error(a_e), Error(b_e)) => a_e.cmp(b_e),
                (Bool, Bool) | (Char, Char) | (Str, Str) | (Never, Never) => Ordering::Equal,
                _ => {
                    debug_assert!(false, "This branch must be unreachable, maybe the match is missing an arm? self = self = {self:?}, other = {other:?}");
                    Ordering::Equal
                }
            }
        })
    }
}

// This is manually implemented because a derive would require `I: Hash`
impl<I: Interner> hash::Hash for TyKind<I> {
    fn hash<__H: hash::Hasher>(&self, state: &mut __H) -> () {
        tykind_discriminant(self).hash(state);
        match self {
            Int(i) => i.hash(state),
            Uint(u) => u.hash(state),
            Float(f) => f.hash(state),
            Adt(d, s) => {
                d.hash(state);
                s.hash(state)
            }
            Foreign(d) => d.hash(state),
            Array(t, c) => {
                t.hash(state);
                c.hash(state)
            }
            Slice(t) => t.hash(state),
            RawPtr(t) => t.hash(state),
            Ref(r, t, m) => {
                r.hash(state);
                t.hash(state);
                m.hash(state)
            }
            FnDef(d, s) => {
                d.hash(state);
                s.hash(state)
            }
            FnPtr(s) => s.hash(state),
            Dynamic(p, r, repr) => {
                p.hash(state);
                r.hash(state);
                repr.hash(state)
            }
            Closure(d, s) => {
                d.hash(state);
                s.hash(state)
            }
            Generator(d, s, m) => {
                d.hash(state);
                s.hash(state);
                m.hash(state)
            }
            GeneratorWitness(g) => g.hash(state),
            Tuple(t) => t.hash(state),
            Alias(i, p) => {
                i.hash(state);
                p.hash(state);
            }
            Param(p) => p.hash(state),
            Bound(d, b) => {
                d.hash(state);
                b.hash(state)
            }
            Placeholder(p) => p.hash(state),
            Infer(t) => t.hash(state),
            Error(e) => e.hash(state),
            Bool | Char | Str | Never => (),
        }
    }
}

// This is manually implemented because a derive would require `I: Debug`
impl<I: Interner> fmt::Debug for TyKind<I> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Bool => f.write_str("Bool"),
            Char => f.write_str("Char"),
            Int(i) => f.debug_tuple_field1_finish("Int", i),
            Uint(u) => f.debug_tuple_field1_finish("Uint", u),
            Float(float) => f.debug_tuple_field1_finish("Float", float),
            Adt(d, s) => f.debug_tuple_field2_finish("Adt", d, s),
            Foreign(d) => f.debug_tuple_field1_finish("Foreign", d),
            Str => f.write_str("Str"),
            Array(t, c) => f.debug_tuple_field2_finish("Array", t, c),
            Slice(t) => f.debug_tuple_field1_finish("Slice", t),
            RawPtr(t) => f.debug_tuple_field1_finish("RawPtr", t),
            Ref(r, t, m) => f.debug_tuple_field3_finish("Ref", r, t, m),
            FnDef(d, s) => f.debug_tuple_field2_finish("FnDef", d, s),
            FnPtr(s) => f.debug_tuple_field1_finish("FnPtr", s),
            Dynamic(p, r, repr) => f.debug_tuple_field3_finish("Dynamic", p, r, repr),
            Closure(d, s) => f.debug_tuple_field2_finish("Closure", d, s),
            Generator(d, s, m) => f.debug_tuple_field3_finish("Generator", d, s, m),
            GeneratorWitness(g) => f.debug_tuple_field1_finish("GeneratorWitness", g),
            Never => f.write_str("Never"),
            Tuple(t) => f.debug_tuple_field1_finish("Tuple", t),
            Alias(i, a) => f.debug_tuple_field2_finish("Alias", i, a),
            Param(p) => f.debug_tuple_field1_finish("Param", p),
            Bound(d, b) => f.debug_tuple_field2_finish("Bound", d, b),
            Placeholder(p) => f.debug_tuple_field1_finish("Placeholder", p),
            Infer(t) => f.debug_tuple_field1_finish("Infer", t),
            TyKind::Error(e) => f.debug_tuple_field1_finish("Error", e),
        }
    }
}

// This is manually implemented because a derive would require `I: Encodable`
impl<I: Interner, E: TyEncoder> Encodable<E> for TyKind<I>
where
    I::ErrorGuaranteed: Encodable<E>,
    I::AdtDef: Encodable<E>,
    I::SubstsRef: Encodable<E>,
    I::DefId: Encodable<E>,
    I::Ty: Encodable<E>,
    I::Const: Encodable<E>,
    I::Region: Encodable<E>,
    I::TypeAndMut: Encodable<E>,
    I::Mutability: Encodable<E>,
    I::Movability: Encodable<E>,
    I::PolyFnSig: Encodable<E>,
    I::ListBinderExistentialPredicate: Encodable<E>,
    I::BinderListTy: Encodable<E>,
    I::ListTy: Encodable<E>,
    I::AliasTy: Encodable<E>,
    I::ParamTy: Encodable<E>,
    I::BoundTy: Encodable<E>,
    I::PlaceholderType: Encodable<E>,
    I::InferTy: Encodable<E>,
    I::PredicateKind: Encodable<E>,
    I::AllocId: Encodable<E>,
{
    fn encode(&self, e: &mut E) {
        let disc = tykind_discriminant(self);
        match self {
            Bool => e.emit_enum_variant(disc, |_| {}),
            Char => e.emit_enum_variant(disc, |_| {}),
            Int(i) => e.emit_enum_variant(disc, |e| {
                i.encode(e);
            }),
            Uint(u) => e.emit_enum_variant(disc, |e| {
                u.encode(e);
            }),
            Float(f) => e.emit_enum_variant(disc, |e| {
                f.encode(e);
            }),
            Adt(adt, substs) => e.emit_enum_variant(disc, |e| {
                adt.encode(e);
                substs.encode(e);
            }),
            Foreign(def_id) => e.emit_enum_variant(disc, |e| {
                def_id.encode(e);
            }),
            Str => e.emit_enum_variant(disc, |_| {}),
            Array(t, c) => e.emit_enum_variant(disc, |e| {
                t.encode(e);
                c.encode(e);
            }),
            Slice(t) => e.emit_enum_variant(disc, |e| {
                t.encode(e);
            }),
            RawPtr(tam) => e.emit_enum_variant(disc, |e| {
                tam.encode(e);
            }),
            Ref(r, t, m) => e.emit_enum_variant(disc, |e| {
                r.encode(e);
                t.encode(e);
                m.encode(e);
            }),
            FnDef(def_id, substs) => e.emit_enum_variant(disc, |e| {
                def_id.encode(e);
                substs.encode(e);
            }),
            FnPtr(polyfnsig) => e.emit_enum_variant(disc, |e| {
                polyfnsig.encode(e);
            }),
            Dynamic(l, r, repr) => e.emit_enum_variant(disc, |e| {
                l.encode(e);
                r.encode(e);
                repr.encode(e);
            }),
            Closure(def_id, substs) => e.emit_enum_variant(disc, |e| {
                def_id.encode(e);
                substs.encode(e);
            }),
            Generator(def_id, substs, m) => e.emit_enum_variant(disc, |e| {
                def_id.encode(e);
                substs.encode(e);
                m.encode(e);
            }),
            GeneratorWitness(b) => e.emit_enum_variant(disc, |e| {
                b.encode(e);
            }),
            Never => e.emit_enum_variant(disc, |_| {}),
            Tuple(substs) => e.emit_enum_variant(disc, |e| {
                substs.encode(e);
            }),
            Alias(k, p) => e.emit_enum_variant(disc, |e| {
                k.encode(e);
                p.encode(e);
            }),
            Param(p) => e.emit_enum_variant(disc, |e| {
                p.encode(e);
            }),
            Bound(d, b) => e.emit_enum_variant(disc, |e| {
                d.encode(e);
                b.encode(e);
            }),
            Placeholder(p) => e.emit_enum_variant(disc, |e| {
                p.encode(e);
            }),
            Infer(i) => e.emit_enum_variant(disc, |e| {
                i.encode(e);
            }),
            Error(d) => e.emit_enum_variant(disc, |e| {
                d.encode(e);
            }),
        }
    }
}

// This is manually implemented because a derive would require `I: Decodable`
impl<I: Interner, D: TyDecoder<I = I>> Decodable<D> for TyKind<I>
where
    I::ErrorGuaranteed: Decodable<D>,
    I::AdtDef: Decodable<D>,
    I::SubstsRef: Decodable<D>,
    I::DefId: Decodable<D>,
    I::Ty: Decodable<D>,
    I::Const: Decodable<D>,
    I::Region: Decodable<D>,
    I::TypeAndMut: Decodable<D>,
    I::Mutability: Decodable<D>,
    I::Movability: Decodable<D>,
    I::PolyFnSig: Decodable<D>,
    I::ListBinderExistentialPredicate: Decodable<D>,
    I::BinderListTy: Decodable<D>,
    I::ListTy: Decodable<D>,
    I::AliasTy: Decodable<D>,
    I::ParamTy: Decodable<D>,
    I::AliasTy: Decodable<D>,
    I::BoundTy: Decodable<D>,
    I::PlaceholderType: Decodable<D>,
    I::InferTy: Decodable<D>,
    I::PredicateKind: Decodable<D>,
    I::AllocId: Decodable<D>,
{
    fn decode(d: &mut D) -> Self {
        match Decoder::read_usize(d) {
            0 => Bool,
            1 => Char,
            2 => Int(Decodable::decode(d)),
            3 => Uint(Decodable::decode(d)),
            4 => Float(Decodable::decode(d)),
            5 => Adt(Decodable::decode(d), Decodable::decode(d)),
            6 => Foreign(Decodable::decode(d)),
            7 => Str,
            8 => Array(Decodable::decode(d), Decodable::decode(d)),
            9 => Slice(Decodable::decode(d)),
            10 => RawPtr(Decodable::decode(d)),
            11 => Ref(Decodable::decode(d), Decodable::decode(d), Decodable::decode(d)),
            12 => FnDef(Decodable::decode(d), Decodable::decode(d)),
            13 => FnPtr(Decodable::decode(d)),
            14 => Dynamic(Decodable::decode(d), Decodable::decode(d), Decodable::decode(d)),
            15 => Closure(Decodable::decode(d), Decodable::decode(d)),
            16 => Generator(Decodable::decode(d), Decodable::decode(d), Decodable::decode(d)),
            17 => GeneratorWitness(Decodable::decode(d)),
            18 => Never,
            19 => Tuple(Decodable::decode(d)),
            20 => Alias(Decodable::decode(d), Decodable::decode(d)),
            21 => Param(Decodable::decode(d)),
            22 => Bound(Decodable::decode(d), Decodable::decode(d)),
            23 => Placeholder(Decodable::decode(d)),
            24 => Infer(Decodable::decode(d)),
            25 => Error(Decodable::decode(d)),
            _ => panic!(
                "{}",
                format!(
                    "invalid enum variant tag while decoding `{}`, expected 0..{}",
                    "TyKind", 27,
                )
            ),
        }
    }
}

// This is not a derived impl because a derive would require `I: HashStable`
#[allow(rustc::usage_of_ty_tykind)]
impl<CTX: HashStableContext, I: Interner> HashStable<CTX> for TyKind<I>
where
    I::AdtDef: HashStable<CTX>,
    I::DefId: HashStable<CTX>,
    I::SubstsRef: HashStable<CTX>,
    I::Ty: HashStable<CTX>,
    I::Const: HashStable<CTX>,
    I::TypeAndMut: HashStable<CTX>,
    I::PolyFnSig: HashStable<CTX>,
    I::ListBinderExistentialPredicate: HashStable<CTX>,
    I::Region: HashStable<CTX>,
    I::Movability: HashStable<CTX>,
    I::Mutability: HashStable<CTX>,
    I::BinderListTy: HashStable<CTX>,
    I::ListTy: HashStable<CTX>,
    I::AliasTy: HashStable<CTX>,
    I::BoundTy: HashStable<CTX>,
    I::ParamTy: HashStable<CTX>,
    I::PlaceholderType: HashStable<CTX>,
    I::InferTy: HashStable<CTX>,
    I::ErrorGuaranteed: HashStable<CTX>,
{
    #[inline]
    fn hash_stable(
        &self,
        __hcx: &mut CTX,
        __hasher: &mut rustc_data_structures::stable_hasher::StableHasher,
    ) {
        std::mem::discriminant(self).hash_stable(__hcx, __hasher);
        match self {
            Bool => {}
            Char => {}
            Int(i) => {
                i.hash_stable(__hcx, __hasher);
            }
            Uint(u) => {
                u.hash_stable(__hcx, __hasher);
            }
            Float(f) => {
                f.hash_stable(__hcx, __hasher);
            }
            Adt(adt, substs) => {
                adt.hash_stable(__hcx, __hasher);
                substs.hash_stable(__hcx, __hasher);
            }
            Foreign(def_id) => {
                def_id.hash_stable(__hcx, __hasher);
            }
            Str => {}
            Array(t, c) => {
                t.hash_stable(__hcx, __hasher);
                c.hash_stable(__hcx, __hasher);
            }
            Slice(t) => {
                t.hash_stable(__hcx, __hasher);
            }
            RawPtr(tam) => {
                tam.hash_stable(__hcx, __hasher);
            }
            Ref(r, t, m) => {
                r.hash_stable(__hcx, __hasher);
                t.hash_stable(__hcx, __hasher);
                m.hash_stable(__hcx, __hasher);
            }
            FnDef(def_id, substs) => {
                def_id.hash_stable(__hcx, __hasher);
                substs.hash_stable(__hcx, __hasher);
            }
            FnPtr(polyfnsig) => {
                polyfnsig.hash_stable(__hcx, __hasher);
            }
            Dynamic(l, r, repr) => {
                l.hash_stable(__hcx, __hasher);
                r.hash_stable(__hcx, __hasher);
                repr.hash_stable(__hcx, __hasher);
            }
            Closure(def_id, substs) => {
                def_id.hash_stable(__hcx, __hasher);
                substs.hash_stable(__hcx, __hasher);
            }
            Generator(def_id, substs, m) => {
                def_id.hash_stable(__hcx, __hasher);
                substs.hash_stable(__hcx, __hasher);
                m.hash_stable(__hcx, __hasher);
            }
            GeneratorWitness(b) => {
                b.hash_stable(__hcx, __hasher);
            }
            Never => {}
            Tuple(substs) => {
                substs.hash_stable(__hcx, __hasher);
            }
            Alias(k, p) => {
                k.hash_stable(__hcx, __hasher);
                p.hash_stable(__hcx, __hasher);
            }
            Param(p) => {
                p.hash_stable(__hcx, __hasher);
            }
            Bound(d, b) => {
                d.hash_stable(__hcx, __hasher);
                b.hash_stable(__hcx, __hasher);
            }
            Placeholder(p) => {
                p.hash_stable(__hcx, __hasher);
            }
            Infer(i) => {
                i.hash_stable(__hcx, __hasher);
            }
            Error(d) => {
                d.hash_stable(__hcx, __hasher);
            }
        }
    }
}

/// Representation of regions. Note that the NLL checker uses a distinct
/// representation of regions. For this reason, it internally replaces all the
/// regions with inference variables -- the index of the variable is then used
/// to index into internal NLL data structures. See `rustc_const_eval::borrow_check`
/// module for more information.
///
/// Note: operations are on the wrapper `Region` type, which is interned,
/// rather than this type.
///
/// ## The Region lattice within a given function
///
/// In general, the region lattice looks like
///
/// ```text
/// static ----------+-----...------+       (greatest)
/// |                |              |
/// early-bound and  |              |
/// free regions     |              |
/// |                |              |
/// |                |              |
/// empty(root)   placeholder(U1)   |
/// |            /                  |
/// |           /         placeholder(Un)
/// empty(U1) --         /
/// |                   /
/// ...                /
/// |                 /
/// empty(Un) --------                      (smallest)
/// ```
///
/// Early-bound/free regions are the named lifetimes in scope from the
/// function declaration. They have relationships to one another
/// determined based on the declared relationships from the
/// function.
///
/// Note that inference variables and bound regions are not included
/// in this diagram. In the case of inference variables, they should
/// be inferred to some other region from the diagram.  In the case of
/// bound regions, they are excluded because they don't make sense to
/// include -- the diagram indicates the relationship between free
/// regions.
///
/// ## Inference variables
///
/// During region inference, we sometimes create inference variables,
/// represented as `ReVar`. These will be inferred by the code in
/// `infer::lexical_region_resolve` to some free region from the
/// lattice above (the minimal region that meets the
/// constraints).
///
/// During NLL checking, where regions are defined differently, we
/// also use `ReVar` -- in that case, the index is used to index into
/// the NLL region checker's data structures. The variable may in fact
/// represent either a free region or an inference variable, in that
/// case.
///
/// ## Bound Regions
///
/// These are regions that are stored behind a binder and must be substituted
/// with some concrete region before being used. There are two kind of
/// bound regions: early-bound, which are bound in an item's `Generics`,
/// and are substituted by an `InternalSubsts`, and late-bound, which are part of
/// higher-ranked types (e.g., `for<'a> fn(&'a ())`), and are substituted by
/// the likes of `liberate_late_bound_regions`. The distinction exists
/// because higher-ranked lifetimes aren't supported in all places. See [1][2].
///
/// Unlike `Param`s, bound regions are not supposed to exist "in the wild"
/// outside their binder, e.g., in types passed to type inference, and
/// should first be substituted (by placeholder regions, free regions,
/// or region variables).
///
/// ## Placeholder and Free Regions
///
/// One often wants to work with bound regions without knowing their precise
/// identity. For example, when checking a function, the lifetime of a borrow
/// can end up being assigned to some region parameter. In these cases,
/// it must be ensured that bounds on the region can't be accidentally
/// assumed without being checked.
///
/// To do this, we replace the bound regions with placeholder markers,
/// which don't satisfy any relation not explicitly provided.
///
/// There are two kinds of placeholder regions in rustc: `ReFree` and
/// `RePlaceholder`. When checking an item's body, `ReFree` is supposed
/// to be used. These also support explicit bounds: both the internally-stored
/// *scope*, which the region is assumed to outlive, as well as other
/// relations stored in the `FreeRegionMap`. Note that these relations
/// aren't checked when you `make_subregion` (or `eq_types`), only by
/// `resolve_regions_and_report_errors`.
///
/// When working with higher-ranked types, some region relations aren't
/// yet known, so you can't just call `resolve_regions_and_report_errors`.
/// `RePlaceholder` is designed for this purpose. In these contexts,
/// there's also the risk that some inference variable laying around will
/// get unified with your placeholder region: if you want to check whether
/// `for<'a> Foo<'_>: 'a`, and you substitute your bound region `'a`
/// with a placeholder region `'%a`, the variable `'_` would just be
/// instantiated to the placeholder region `'%a`, which is wrong because
/// the inference variable is supposed to satisfy the relation
/// *for every value of the placeholder region*. To ensure that doesn't
/// happen, you can use `leak_check`. This is more clearly explained
/// by the [rustc dev guide].
///
/// [1]: https://smallcultfollowing.com/babysteps/blog/2013/10/29/intermingled-parameter-lists/
/// [2]: https://smallcultfollowing.com/babysteps/blog/2013/11/04/intermingled-parameter-lists/
/// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/hrtb.html
pub enum RegionKind<I: Interner> {
    /// Region bound in a type or fn declaration which will be
    /// substituted 'early' -- that is, at the same time when type
    /// parameters are substituted.
    ReEarlyBound(I::EarlyBoundRegion),

    /// Region bound in a function scope, which will be substituted when the
    /// function is called.
    ReLateBound(DebruijnIndex, I::BoundRegion),

    /// When checking a function body, the types of all arguments and so forth
    /// that refer to bound region parameters are modified to refer to free
    /// region parameters.
    ReFree(I::FreeRegion),

    /// Static data that has an "infinite" lifetime. Top in the region lattice.
    ReStatic,

    /// A region variable. Should not exist outside of type inference.
    ReVar(I::RegionVid),

    /// A placeholder region -- basically, the higher-ranked version of `ReFree`.
    /// Should not exist outside of type inference.
    RePlaceholder(I::PlaceholderRegion),

    /// Erased region, used by trait selection, in MIR and during codegen.
    ReErased,
}

// This is manually implemented for `RegionKind` because `std::mem::discriminant`
// returns an opaque value that is `PartialEq` but not `PartialOrd`
#[inline]
const fn regionkind_discriminant<I: Interner>(value: &RegionKind<I>) -> usize {
    match value {
        ReEarlyBound(_) => 0,
        ReLateBound(_, _) => 1,
        ReFree(_) => 2,
        ReStatic => 3,
        ReVar(_) => 4,
        RePlaceholder(_) => 5,
        ReErased => 6,
    }
}

// This is manually implemented because a derive would require `I: Copy`
impl<I: Interner> Copy for RegionKind<I>
where
    I::EarlyBoundRegion: Copy,
    I::BoundRegion: Copy,
    I::FreeRegion: Copy,
    I::RegionVid: Copy,
    I::PlaceholderRegion: Copy,
{
}

// This is manually implemented because a derive would require `I: Clone`
impl<I: Interner> Clone for RegionKind<I> {
    fn clone(&self) -> Self {
        match self {
            ReEarlyBound(r) => ReEarlyBound(r.clone()),
            ReLateBound(d, r) => ReLateBound(*d, r.clone()),
            ReFree(r) => ReFree(r.clone()),
            ReStatic => ReStatic,
            ReVar(r) => ReVar(r.clone()),
            RePlaceholder(r) => RePlaceholder(r.clone()),
            ReErased => ReErased,
        }
    }
}

// This is manually implemented because a derive would require `I: PartialEq`
impl<I: Interner> PartialEq for RegionKind<I> {
    #[inline]
    fn eq(&self, other: &RegionKind<I>) -> bool {
        regionkind_discriminant(self) == regionkind_discriminant(other)
            && match (self, other) {
                (ReEarlyBound(a_r), ReEarlyBound(b_r)) => a_r == b_r,
                (ReLateBound(a_d, a_r), ReLateBound(b_d, b_r)) => a_d == b_d && a_r == b_r,
                (ReFree(a_r), ReFree(b_r)) => a_r == b_r,
                (ReStatic, ReStatic) => true,
                (ReVar(a_r), ReVar(b_r)) => a_r == b_r,
                (RePlaceholder(a_r), RePlaceholder(b_r)) => a_r == b_r,
                (ReErased, ReErased) => true,
                _ => {
                    debug_assert!(
                        false,
                        "This branch must be unreachable, maybe the match is missing an arm? self = self = {self:?}, other = {other:?}"
                    );
                    true
                }
            }
    }
}

// This is manually implemented because a derive would require `I: Eq`
impl<I: Interner> Eq for RegionKind<I> {}

// This is manually implemented because a derive would require `I: PartialOrd`
impl<I: Interner> PartialOrd for RegionKind<I> {
    #[inline]
    fn partial_cmp(&self, other: &RegionKind<I>) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

// This is manually implemented because a derive would require `I: Ord`
impl<I: Interner> Ord for RegionKind<I> {
    #[inline]
    fn cmp(&self, other: &RegionKind<I>) -> Ordering {
        regionkind_discriminant(self).cmp(&regionkind_discriminant(other)).then_with(|| {
            match (self, other) {
                (ReEarlyBound(a_r), ReEarlyBound(b_r)) => a_r.cmp(b_r),
                (ReLateBound(a_d, a_r), ReLateBound(b_d, b_r)) => {
                    a_d.cmp(b_d).then_with(|| a_r.cmp(b_r))
                }
                (ReFree(a_r), ReFree(b_r)) => a_r.cmp(b_r),
                (ReStatic, ReStatic) => Ordering::Equal,
                (ReVar(a_r), ReVar(b_r)) => a_r.cmp(b_r),
                (RePlaceholder(a_r), RePlaceholder(b_r)) => a_r.cmp(b_r),
                (ReErased, ReErased) => Ordering::Equal,
                _ => {
                    debug_assert!(false, "This branch must be unreachable, maybe the match is missing an arm? self = self = {self:?}, other = {other:?}");
                    Ordering::Equal
                }
            }
        })
    }
}

// This is manually implemented because a derive would require `I: Hash`
impl<I: Interner> hash::Hash for RegionKind<I> {
    fn hash<H: hash::Hasher>(&self, state: &mut H) -> () {
        regionkind_discriminant(self).hash(state);
        match self {
            ReEarlyBound(r) => r.hash(state),
            ReLateBound(d, r) => {
                d.hash(state);
                r.hash(state)
            }
            ReFree(r) => r.hash(state),
            ReStatic => (),
            ReVar(r) => r.hash(state),
            RePlaceholder(r) => r.hash(state),
            ReErased => (),
        }
    }
}

// This is manually implemented because a derive would require `I: Debug`
impl<I: Interner> fmt::Debug for RegionKind<I> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            ReEarlyBound(data) => write!(f, "ReEarlyBound({:?})", data),

            ReLateBound(binder_id, bound_region) => {
                write!(f, "ReLateBound({:?}, {:?})", binder_id, bound_region)
            }

            ReFree(fr) => fr.fmt(f),

            ReStatic => f.write_str("ReStatic"),

            ReVar(vid) => vid.fmt(f),

            RePlaceholder(placeholder) => write!(f, "RePlaceholder({:?})", placeholder),

            ReErased => f.write_str("ReErased"),
        }
    }
}

// This is manually implemented because a derive would require `I: Encodable`
impl<I: Interner, E: TyEncoder> Encodable<E> for RegionKind<I>
where
    I::EarlyBoundRegion: Encodable<E>,
    I::BoundRegion: Encodable<E>,
    I::FreeRegion: Encodable<E>,
    I::RegionVid: Encodable<E>,
    I::PlaceholderRegion: Encodable<E>,
{
    fn encode(&self, e: &mut E) {
        let disc = regionkind_discriminant(self);
        match self {
            ReEarlyBound(a) => e.emit_enum_variant(disc, |e| {
                a.encode(e);
            }),
            ReLateBound(a, b) => e.emit_enum_variant(disc, |e| {
                a.encode(e);
                b.encode(e);
            }),
            ReFree(a) => e.emit_enum_variant(disc, |e| {
                a.encode(e);
            }),
            ReStatic => e.emit_enum_variant(disc, |_| {}),
            ReVar(a) => e.emit_enum_variant(disc, |e| {
                a.encode(e);
            }),
            RePlaceholder(a) => e.emit_enum_variant(disc, |e| {
                a.encode(e);
            }),
            ReErased => e.emit_enum_variant(disc, |_| {}),
        }
    }
}

// This is manually implemented because a derive would require `I: Decodable`
impl<I: Interner, D: TyDecoder<I = I>> Decodable<D> for RegionKind<I>
where
    I::EarlyBoundRegion: Decodable<D>,
    I::BoundRegion: Decodable<D>,
    I::FreeRegion: Decodable<D>,
    I::RegionVid: Decodable<D>,
    I::PlaceholderRegion: Decodable<D>,
{
    fn decode(d: &mut D) -> Self {
        match Decoder::read_usize(d) {
            0 => ReEarlyBound(Decodable::decode(d)),
            1 => ReLateBound(Decodable::decode(d), Decodable::decode(d)),
            2 => ReFree(Decodable::decode(d)),
            3 => ReStatic,
            4 => ReVar(Decodable::decode(d)),
            5 => RePlaceholder(Decodable::decode(d)),
            6 => ReErased,
            _ => panic!(
                "{}",
                format!(
                    "invalid enum variant tag while decoding `{}`, expected 0..{}",
                    "RegionKind", 8,
                )
            ),
        }
    }
}

// This is not a derived impl because a derive would require `I: HashStable`
impl<CTX: HashStableContext, I: Interner> HashStable<CTX> for RegionKind<I>
where
    I::EarlyBoundRegion: HashStable<CTX>,
    I::BoundRegion: HashStable<CTX>,
    I::FreeRegion: HashStable<CTX>,
    I::RegionVid: HashStable<CTX>,
    I::PlaceholderRegion: HashStable<CTX>,
{
    #[inline]
    fn hash_stable(
        &self,
        hcx: &mut CTX,
        hasher: &mut rustc_data_structures::stable_hasher::StableHasher,
    ) {
        std::mem::discriminant(self).hash_stable(hcx, hasher);
        match self {
            ReErased | ReStatic => {
                // No variant fields to hash for these ...
            }
            ReLateBound(d, r) => {
                d.hash_stable(hcx, hasher);
                r.hash_stable(hcx, hasher);
            }
            ReEarlyBound(r) => {
                r.hash_stable(hcx, hasher);
            }
            ReFree(r) => {
                r.hash_stable(hcx, hasher);
            }
            RePlaceholder(r) => {
                r.hash_stable(hcx, hasher);
            }
            ReVar(_) => {
                panic!("region variables should not be hashed: {self:?}")
            }
        }
    }
}