1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
#![warn(missing_docs)]

/*!
# An owning reference.

This crate provides the _owning reference_ types `OwningRef` and `OwningRefMut`
that enables it to bundle a reference together with the owner of the data it points to.
This allows moving and dropping of an `OwningRef` without needing to recreate the reference.

This can sometimes be useful because Rust borrowing rules normally prevent
moving a type that has been moved from. For example, this kind of code gets rejected:

```compile_fail,E0515
fn return_owned_and_referenced<'a>() -> (Vec<u8>, &'a [u8]) {
    let v = vec![1, 2, 3, 4];
    let s = &v[1..3];
    (v, s)
}
```

Even though, from a memory-layout point of view, this can be entirely safe
if the new location of the vector still lives longer than the lifetime `'a`
of the reference because the backing allocation of the vector does not change.

This library enables this safe usage by keeping the owner and the reference
bundled together in a wrapper type that ensure that lifetime constraint:

```
# use rustc_data_structures::owning_ref::OwningRef;
# fn main() {
fn return_owned_and_referenced() -> OwningRef<Vec<u8>, [u8]> {
    let v = vec![1, 2, 3, 4];
    let or = OwningRef::new(v);
    let or = or.map(|v| &v[1..3]);
    or
}
# }
```

It works by requiring owner types to dereference to stable memory locations
and preventing mutable access to root containers, which in practice requires heap allocation
as provided by `Box<T>`, `Rc<T>`, etc.

Also provided are typedefs for common owner type combinations,
which allow for less verbose type signatures.
For example, `BoxRef<T>` instead of `OwningRef<Box<T>, T>`.

The crate also provides the more advanced `OwningHandle` type,
which allows more freedom in bundling a dependent handle object
along with the data it depends on, at the cost of some unsafe needed in the API.
See the documentation around `OwningHandle` for more details.

# Examples

## Basics

```
use rustc_data_structures::owning_ref::BoxRef;

fn main() {
    // Create an array owned by a Box.
    let arr = Box::new([1, 2, 3, 4]) as Box<[i32]>;

    // Transfer into a BoxRef.
    let arr: BoxRef<[i32]> = BoxRef::new(arr);
    assert_eq!(&*arr, &[1, 2, 3, 4]);

    // We can slice the array without losing ownership or changing type.
    let arr: BoxRef<[i32]> = arr.map(|arr| &arr[1..3]);
    assert_eq!(&*arr, &[2, 3]);

    // Also works for Arc, Rc, String and Vec!
}
```

## Caching a reference to a struct field

```
use rustc_data_structures::owning_ref::BoxRef;

fn main() {
    struct Foo {
        tag: u32,
        x: u16,
        y: u16,
        z: u16,
    }
    let foo = Foo { tag: 1, x: 100, y: 200, z: 300 };

    let or = BoxRef::new(Box::new(foo)).map(|foo| {
        match foo.tag {
            0 => &foo.x,
            1 => &foo.y,
            2 => &foo.z,
            _ => panic!(),
        }
    });

    assert_eq!(*or, 200);
}
```

## Caching a reference to an entry in a vector

```
use rustc_data_structures::owning_ref::VecRef;

fn main() {
    let v = VecRef::new(vec![1, 2, 3, 4, 5]).map(|v| &v[3]);
    assert_eq!(*v, 4);
}
```

## Caching a subslice of a String

```
use rustc_data_structures::owning_ref::StringRef;

fn main() {
    let s = StringRef::new("hello world".to_owned())
        .map(|s| s.split(' ').nth(1).unwrap());

    assert_eq!(&*s, "world");
}
```

## Reference counted slices that share ownership of the backing storage

```
use rustc_data_structures::owning_ref::RcRef;
use std::rc::Rc;

fn main() {
    let rc: RcRef<[i32]> = RcRef::new(Rc::new([1, 2, 3, 4]) as Rc<[i32]>);
    assert_eq!(&*rc, &[1, 2, 3, 4]);

    let rc_a: RcRef<[i32]> = rc.clone().map(|s| &s[0..2]);
    let rc_b = rc.clone().map(|s| &s[1..3]);
    let rc_c = rc.clone().map(|s| &s[2..4]);
    assert_eq!(&*rc_a, &[1, 2]);
    assert_eq!(&*rc_b, &[2, 3]);
    assert_eq!(&*rc_c, &[3, 4]);

    let rc_c_a = rc_c.clone().map(|s| &s[1]);
    assert_eq!(&*rc_c_a, &4);
}
```

## Atomic reference counted slices that share ownership of the backing storage

```
use rustc_data_structures::owning_ref::ArcRef;
use std::sync::Arc;

fn main() {
    use std::thread;

    fn par_sum(rc: ArcRef<[i32]>) -> i32 {
        if rc.len() == 0 {
            return 0;
        } else if rc.len() == 1 {
            return rc[0];
        }
        let mid = rc.len() / 2;
        let left = rc.clone().map(|s| &s[..mid]);
        let right = rc.map(|s| &s[mid..]);

        let left = thread::spawn(move || par_sum(left));
        let right = thread::spawn(move || par_sum(right));

        left.join().unwrap() + right.join().unwrap()
    }

    let rc: Arc<[i32]> = Arc::new([1, 2, 3, 4]);
    let rc: ArcRef<[i32]> = rc.into();

    assert_eq!(par_sum(rc), 10);
}
```

## References into RAII locks

```
use rustc_data_structures::owning_ref::RefRef;
use std::cell::{RefCell, Ref};

fn main() {
    let refcell = RefCell::new((1, 2, 3, 4));
    // Also works with Mutex and RwLock

    let refref = {
        let refref = RefRef::new(refcell.borrow()).map(|x| &x.3);
        assert_eq!(*refref, 4);

        // We move the RAII lock and the reference to one of
        // the subfields in the data it guards here:
        refref
    };

    assert_eq!(*refref, 4);

    drop(refref);

    assert_eq!(*refcell.borrow(), (1, 2, 3, 4));
}
```

## Mutable reference

When the owned container implements `DerefMut`, it is also possible to make
a _mutable owning reference_. (e.g., with `Box`, `RefMut`, `MutexGuard`)

```
use rustc_data_structures::owning_ref::RefMutRefMut;
use std::cell::{RefCell, RefMut};

fn main() {
    let refcell = RefCell::new((1, 2, 3, 4));

    let mut refmut_refmut = {
        let mut refmut_refmut = RefMutRefMut::new(refcell.borrow_mut()).map_mut(|x| &mut x.3);
        assert_eq!(*refmut_refmut, 4);
        *refmut_refmut *= 2;

        refmut_refmut
    };

    assert_eq!(*refmut_refmut, 8);
    *refmut_refmut *= 2;

    drop(refmut_refmut);

    assert_eq!(*refcell.borrow(), (1, 2, 3, 16));
}
```
*/

pub use stable_deref_trait::{
    CloneStableDeref as CloneStableAddress, StableDeref as StableAddress,
};
use std::mem;

/// An owning reference.
///
/// This wraps an owner `O` and a reference `&T` pointing
/// at something reachable from `O::Target` while keeping
/// the ability to move `self` around.
///
/// The owner is usually a pointer that points at some base type.
///
/// For more details and examples, see the module and method docs.
pub struct OwningRef<O, T: ?Sized> {
    owner: O,
    reference: *const T,
}

/// An mutable owning reference.
///
/// This wraps an owner `O` and a reference `&mut T` pointing
/// at something reachable from `O::Target` while keeping
/// the ability to move `self` around.
///
/// The owner is usually a pointer that points at some base type.
///
/// For more details and examples, see the module and method docs.
pub struct OwningRefMut<O, T: ?Sized> {
    owner: O,
    reference: *mut T,
}

/// Helper trait for an erased concrete type an owner dereferences to.
/// This is used in form of a trait object for keeping
/// something around to (virtually) call the destructor.
pub trait Erased {}
impl<T> Erased for T {}

/// Helper trait for erasing the concrete type of what an owner dereferences to,
/// for example `Box<T> -> Box<Erased>`. This would be unneeded with
/// higher kinded types support in the language.
#[allow(unused_lifetimes)]
pub unsafe trait IntoErased<'a> {
    /// Owner with the dereference type substituted to `Erased`.
    type Erased;
    /// Performs the type erasure.
    fn into_erased(self) -> Self::Erased;
}

/// Helper trait for erasing the concrete type of what an owner dereferences to,
/// for example `Box<T> -> Box<Erased + Send>`. This would be unneeded with
/// higher kinded types support in the language.
#[allow(unused_lifetimes)]
pub unsafe trait IntoErasedSend<'a> {
    /// Owner with the dereference type substituted to `Erased + Send`.
    type Erased: Send;
    /// Performs the type erasure.
    fn into_erased_send(self) -> Self::Erased;
}

/// Helper trait for erasing the concrete type of what an owner dereferences to,
/// for example `Box<T> -> Box<Erased + Send + Sync>`. This would be unneeded with
/// higher kinded types support in the language.
#[allow(unused_lifetimes)]
pub unsafe trait IntoErasedSendSync<'a> {
    /// Owner with the dereference type substituted to `Erased + Send + Sync`.
    type Erased: Send + Sync;
    /// Performs the type erasure.
    fn into_erased_send_sync(self) -> Self::Erased;
}

/////////////////////////////////////////////////////////////////////////////
// OwningRef
/////////////////////////////////////////////////////////////////////////////

impl<O, T: ?Sized> OwningRef<O, T> {
    /// Creates a new owning reference from an owner
    /// initialized to the direct dereference of it.
    ///
    /// # Example
    /// ```
    /// use rustc_data_structures::owning_ref::OwningRef;
    ///
    /// fn main() {
    ///     let owning_ref = OwningRef::new(Box::new(42));
    ///     assert_eq!(*owning_ref, 42);
    /// }
    /// ```
    pub fn new(o: O) -> Self
    where
        O: StableAddress,
        O: Deref<Target = T>,
    {
        OwningRef { reference: &*o, owner: o }
    }

    /// Like `new`, but doesn’t require `O` to implement the `StableAddress` trait.
    /// Instead, the caller is responsible to make the same promises as implementing the trait.
    ///
    /// This is useful for cases where coherence rules prevents implementing the trait
    /// without adding a dependency to this crate in a third-party library.
    pub unsafe fn new_assert_stable_address(o: O) -> Self
    where
        O: Deref<Target = T>,
    {
        OwningRef { reference: &*o, owner: o }
    }

    /// Converts `self` into a new owning reference that points at something reachable
    /// from the previous one.
    ///
    /// This can be a reference to a field of `U`, something reachable from a field of
    /// `U`, or even something unrelated with a `'static` lifetime.
    ///
    /// # Example
    /// ```
    /// use rustc_data_structures::owning_ref::OwningRef;
    ///
    /// fn main() {
    ///     let owning_ref = OwningRef::new(Box::new([1, 2, 3, 4]));
    ///
    ///     // create an owning reference that points at the
    ///     // third element of the array.
    ///     let owning_ref = owning_ref.map(|array| &array[2]);
    ///     assert_eq!(*owning_ref, 3);
    /// }
    /// ```
    pub fn map<F, U: ?Sized>(self, f: F) -> OwningRef<O, U>
    where
        O: StableAddress,
        F: FnOnce(&T) -> &U,
    {
        OwningRef { reference: f(&self), owner: self.owner }
    }

    /// Tries to convert `self` into a new owning reference that points
    /// at something reachable from the previous one.
    ///
    /// This can be a reference to a field of `U`, something reachable from a field of
    /// `U`, or even something unrelated with a `'static` lifetime.
    ///
    /// # Example
    /// ```
    /// use rustc_data_structures::owning_ref::OwningRef;
    ///
    /// fn main() {
    ///     let owning_ref = OwningRef::new(Box::new([1, 2, 3, 4]));
    ///
    ///     // create an owning reference that points at the
    ///     // third element of the array.
    ///     let owning_ref = owning_ref.try_map(|array| {
    ///         if array[2] == 3 { Ok(&array[2]) } else { Err(()) }
    ///     });
    ///     assert_eq!(*owning_ref.unwrap(), 3);
    /// }
    /// ```
    pub fn try_map<F, U: ?Sized, E>(self, f: F) -> Result<OwningRef<O, U>, E>
    where
        O: StableAddress,
        F: FnOnce(&T) -> Result<&U, E>,
    {
        Ok(OwningRef { reference: f(&self)?, owner: self.owner })
    }

    /// Converts `self` into a new owning reference with a different owner type.
    ///
    /// The new owner type needs to still contain the original owner in some way
    /// so that the reference into it remains valid. This function is marked unsafe
    /// because the user needs to manually uphold this guarantee.
    pub unsafe fn map_owner<F, P>(self, f: F) -> OwningRef<P, T>
    where
        O: StableAddress,
        P: StableAddress,
        F: FnOnce(O) -> P,
    {
        OwningRef { reference: self.reference, owner: f(self.owner) }
    }

    /// Converts `self` into a new owning reference where the owner is wrapped
    /// in an additional `Box<O>`.
    ///
    /// This can be used to safely erase the owner of any `OwningRef<O, T>`
    /// to an `OwningRef<Box<Erased>, T>`.
    pub fn map_owner_box(self) -> OwningRef<Box<O>, T> {
        OwningRef { reference: self.reference, owner: Box::new(self.owner) }
    }

    /// Erases the concrete base type of the owner with a trait object.
    ///
    /// This allows mixing of owned references with different owner base types.
    ///
    /// # Example
    /// ```
    /// use rustc_data_structures::owning_ref::{OwningRef, Erased};
    ///
    /// fn main() {
    ///     // N.B., using the concrete types here for explicitness.
    ///     // For less verbose code type aliases like `BoxRef` are provided.
    ///
    ///     let owning_ref_a: OwningRef<Box<[i32; 4]>, [i32; 4]>
    ///         = OwningRef::new(Box::new([1, 2, 3, 4]));
    ///
    ///     let owning_ref_b: OwningRef<Box<Vec<(i32, bool)>>, Vec<(i32, bool)>>
    ///         = OwningRef::new(Box::new(vec![(0, false), (1, true)]));
    ///
    ///     let owning_ref_a: OwningRef<Box<[i32; 4]>, i32>
    ///         = owning_ref_a.map(|a| &a[0]);
    ///
    ///     let owning_ref_b: OwningRef<Box<Vec<(i32, bool)>>, i32>
    ///         = owning_ref_b.map(|a| &a[1].0);
    ///
    ///     let owning_refs: [OwningRef<Box<dyn Erased>, i32>; 2]
    ///         = [owning_ref_a.erase_owner(), owning_ref_b.erase_owner()];
    ///
    ///     assert_eq!(*owning_refs[0], 1);
    ///     assert_eq!(*owning_refs[1], 1);
    /// }
    /// ```
    pub fn erase_owner<'a>(self) -> OwningRef<O::Erased, T>
    where
        O: IntoErased<'a>,
    {
        OwningRef { reference: self.reference, owner: self.owner.into_erased() }
    }

    /// Erases the concrete base type of the owner with a trait object which implements `Send`.
    ///
    /// This allows mixing of owned references with different owner base types.
    pub fn erase_send_owner<'a>(self) -> OwningRef<O::Erased, T>
    where
        O: IntoErasedSend<'a>,
    {
        OwningRef { reference: self.reference, owner: self.owner.into_erased_send() }
    }

    /// Erases the concrete base type of the owner with a trait object
    /// which implements `Send` and `Sync`.
    ///
    /// This allows mixing of owned references with different owner base types.
    pub fn erase_send_sync_owner<'a>(self) -> OwningRef<O::Erased, T>
    where
        O: IntoErasedSendSync<'a>,
    {
        OwningRef { reference: self.reference, owner: self.owner.into_erased_send_sync() }
    }

    // UNIMPLEMENTED: wrap_owner

    // FIXME: Naming convention?
    /// A getter for the underlying owner.
    pub fn owner(&self) -> &O {
        &self.owner
    }

    // FIXME: Naming convention?
    /// Discards the reference and retrieves the owner.
    pub fn into_inner(self) -> O {
        self.owner
    }
}

impl<O, T: ?Sized> OwningRefMut<O, T> {
    /// Creates a new owning reference from an owner
    /// initialized to the direct dereference of it.
    ///
    /// # Example
    /// ```
    /// use rustc_data_structures::owning_ref::OwningRefMut;
    ///
    /// fn main() {
    ///     let owning_ref_mut = OwningRefMut::new(Box::new(42));
    ///     assert_eq!(*owning_ref_mut, 42);
    /// }
    /// ```
    pub fn new(mut o: O) -> Self
    where
        O: StableAddress,
        O: DerefMut<Target = T>,
    {
        OwningRefMut { reference: &mut *o, owner: o }
    }

    /// Like `new`, but doesn’t require `O` to implement the `StableAddress` trait.
    /// Instead, the caller is responsible to make the same promises as implementing the trait.
    ///
    /// This is useful for cases where coherence rules prevents implementing the trait
    /// without adding a dependency to this crate in a third-party library.
    pub unsafe fn new_assert_stable_address(mut o: O) -> Self
    where
        O: DerefMut<Target = T>,
    {
        OwningRefMut { reference: &mut *o, owner: o }
    }

    /// Converts `self` into a new _shared_ owning reference that points at
    /// something reachable from the previous one.
    ///
    /// This can be a reference to a field of `U`, something reachable from a field of
    /// `U`, or even something unrelated with a `'static` lifetime.
    ///
    /// # Example
    /// ```
    /// use rustc_data_structures::owning_ref::OwningRefMut;
    ///
    /// fn main() {
    ///     let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));
    ///
    ///     // create an owning reference that points at the
    ///     // third element of the array.
    ///     let owning_ref = owning_ref_mut.map(|array| &array[2]);
    ///     assert_eq!(*owning_ref, 3);
    /// }
    /// ```
    pub fn map<F, U: ?Sized>(mut self, f: F) -> OwningRef<O, U>
    where
        O: StableAddress,
        F: FnOnce(&mut T) -> &U,
    {
        OwningRef { reference: f(&mut self), owner: self.owner }
    }

    /// Converts `self` into a new _mutable_ owning reference that points at
    /// something reachable from the previous one.
    ///
    /// This can be a reference to a field of `U`, something reachable from a field of
    /// `U`, or even something unrelated with a `'static` lifetime.
    ///
    /// # Example
    /// ```
    /// use rustc_data_structures::owning_ref::OwningRefMut;
    ///
    /// fn main() {
    ///     let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));
    ///
    ///     // create an owning reference that points at the
    ///     // third element of the array.
    ///     let owning_ref_mut = owning_ref_mut.map_mut(|array| &mut array[2]);
    ///     assert_eq!(*owning_ref_mut, 3);
    /// }
    /// ```
    pub fn map_mut<F, U: ?Sized>(mut self, f: F) -> OwningRefMut<O, U>
    where
        O: StableAddress,
        F: FnOnce(&mut T) -> &mut U,
    {
        OwningRefMut { reference: f(&mut self), owner: self.owner }
    }

    /// Tries to convert `self` into a new _shared_ owning reference that points
    /// at something reachable from the previous one.
    ///
    /// This can be a reference to a field of `U`, something reachable from a field of
    /// `U`, or even something unrelated with a `'static` lifetime.
    ///
    /// # Example
    /// ```
    /// use rustc_data_structures::owning_ref::OwningRefMut;
    ///
    /// fn main() {
    ///     let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));
    ///
    ///     // create an owning reference that points at the
    ///     // third element of the array.
    ///     let owning_ref = owning_ref_mut.try_map(|array| {
    ///         if array[2] == 3 { Ok(&array[2]) } else { Err(()) }
    ///     });
    ///     assert_eq!(*owning_ref.unwrap(), 3);
    /// }
    /// ```
    pub fn try_map<F, U: ?Sized, E>(mut self, f: F) -> Result<OwningRef<O, U>, E>
    where
        O: StableAddress,
        F: FnOnce(&mut T) -> Result<&U, E>,
    {
        Ok(OwningRef { reference: f(&mut self)?, owner: self.owner })
    }

    /// Tries to convert `self` into a new _mutable_ owning reference that points
    /// at something reachable from the previous one.
    ///
    /// This can be a reference to a field of `U`, something reachable from a field of
    /// `U`, or even something unrelated with a `'static` lifetime.
    ///
    /// # Example
    /// ```
    /// use rustc_data_structures::owning_ref::OwningRefMut;
    ///
    /// fn main() {
    ///     let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));
    ///
    ///     // create an owning reference that points at the
    ///     // third element of the array.
    ///     let owning_ref_mut = owning_ref_mut.try_map_mut(|array| {
    ///         if array[2] == 3 { Ok(&mut array[2]) } else { Err(()) }
    ///     });
    ///     assert_eq!(*owning_ref_mut.unwrap(), 3);
    /// }
    /// ```
    pub fn try_map_mut<F, U: ?Sized, E>(mut self, f: F) -> Result<OwningRefMut<O, U>, E>
    where
        O: StableAddress,
        F: FnOnce(&mut T) -> Result<&mut U, E>,
    {
        Ok(OwningRefMut { reference: f(&mut self)?, owner: self.owner })
    }

    /// Converts `self` into a new owning reference with a different owner type.
    ///
    /// The new owner type needs to still contain the original owner in some way
    /// so that the reference into it remains valid. This function is marked unsafe
    /// because the user needs to manually uphold this guarantee.
    pub unsafe fn map_owner<F, P>(self, f: F) -> OwningRefMut<P, T>
    where
        O: StableAddress,
        P: StableAddress,
        F: FnOnce(O) -> P,
    {
        OwningRefMut { reference: self.reference, owner: f(self.owner) }
    }

    /// Converts `self` into a new owning reference where the owner is wrapped
    /// in an additional `Box<O>`.
    ///
    /// This can be used to safely erase the owner of any `OwningRefMut<O, T>`
    /// to an `OwningRefMut<Box<Erased>, T>`.
    pub fn map_owner_box(self) -> OwningRefMut<Box<O>, T> {
        OwningRefMut { reference: self.reference, owner: Box::new(self.owner) }
    }

    /// Erases the concrete base type of the owner with a trait object.
    ///
    /// This allows mixing of owned references with different owner base types.
    ///
    /// # Example
    /// ```
    /// use rustc_data_structures::owning_ref::{OwningRefMut, Erased};
    ///
    /// fn main() {
    ///     // N.B., using the concrete types here for explicitness.
    ///     // For less verbose code type aliases like `BoxRef` are provided.
    ///
    ///     let owning_ref_mut_a: OwningRefMut<Box<[i32; 4]>, [i32; 4]>
    ///         = OwningRefMut::new(Box::new([1, 2, 3, 4]));
    ///
    ///     let owning_ref_mut_b: OwningRefMut<Box<Vec<(i32, bool)>>, Vec<(i32, bool)>>
    ///         = OwningRefMut::new(Box::new(vec![(0, false), (1, true)]));
    ///
    ///     let owning_ref_mut_a: OwningRefMut<Box<[i32; 4]>, i32>
    ///         = owning_ref_mut_a.map_mut(|a| &mut a[0]);
    ///
    ///     let owning_ref_mut_b: OwningRefMut<Box<Vec<(i32, bool)>>, i32>
    ///         = owning_ref_mut_b.map_mut(|a| &mut a[1].0);
    ///
    ///     let owning_refs_mut: [OwningRefMut<Box<dyn Erased>, i32>; 2]
    ///         = [owning_ref_mut_a.erase_owner(), owning_ref_mut_b.erase_owner()];
    ///
    ///     assert_eq!(*owning_refs_mut[0], 1);
    ///     assert_eq!(*owning_refs_mut[1], 1);
    /// }
    /// ```
    pub fn erase_owner<'a>(self) -> OwningRefMut<O::Erased, T>
    where
        O: IntoErased<'a>,
    {
        OwningRefMut { reference: self.reference, owner: self.owner.into_erased() }
    }

    // UNIMPLEMENTED: wrap_owner

    // FIXME: Naming convention?
    /// A getter for the underlying owner.
    pub fn owner(&self) -> &O {
        &self.owner
    }

    // FIXME: Naming convention?
    /// Discards the reference and retrieves the owner.
    pub fn into_inner(self) -> O {
        self.owner
    }
}

/////////////////////////////////////////////////////////////////////////////
// OwningHandle
/////////////////////////////////////////////////////////////////////////////

use std::ops::{Deref, DerefMut};

/// `OwningHandle` is a complement to `OwningRef`. Where `OwningRef` allows
/// consumers to pass around an owned object and a dependent reference,
/// `OwningHandle` contains an owned object and a dependent _object_.
///
/// `OwningHandle` can encapsulate a `RefMut` along with its associated
/// `RefCell`, or an `RwLockReadGuard` along with its associated `RwLock`.
/// However, the API is completely generic and there are no restrictions on
/// what types of owning and dependent objects may be used.
///
/// `OwningHandle` is created by passing an owner object (which dereferences
/// to a stable address) along with a callback which receives a pointer to
/// that stable location. The callback may then dereference the pointer and
/// mint a dependent object, with the guarantee that the returned object will
/// not outlive the referent of the pointer.
///
/// Since the callback needs to dereference a raw pointer, it requires `unsafe`
/// code. To avoid forcing this unsafety on most callers, the `ToHandle` trait is
/// implemented for common data structures. Types that implement `ToHandle` can
/// be wrapped into an `OwningHandle` without passing a callback.
pub struct OwningHandle<O, H>
where
    O: StableAddress,
    H: Deref,
{
    handle: H,
    _owner: O,
}

impl<O, H> Deref for OwningHandle<O, H>
where
    O: StableAddress,
    H: Deref,
{
    type Target = H::Target;
    fn deref(&self) -> &H::Target {
        self.handle.deref()
    }
}

unsafe impl<O, H> StableAddress for OwningHandle<O, H>
where
    O: StableAddress,
    H: StableAddress,
{
}

impl<O, H> DerefMut for OwningHandle<O, H>
where
    O: StableAddress,
    H: DerefMut,
{
    fn deref_mut(&mut self) -> &mut H::Target {
        self.handle.deref_mut()
    }
}

/// Trait to implement the conversion of owner to handle for common types.
pub trait ToHandle {
    /// The type of handle to be encapsulated by the OwningHandle.
    type Handle: Deref;

    /// Given an appropriately-long-lived pointer to ourselves, create a
    /// handle to be encapsulated by the `OwningHandle`.
    unsafe fn to_handle(x: *const Self) -> Self::Handle;
}

/// Trait to implement the conversion of owner to mutable handle for common types.
pub trait ToHandleMut {
    /// The type of handle to be encapsulated by the OwningHandle.
    type HandleMut: DerefMut;

    /// Given an appropriately-long-lived pointer to ourselves, create a
    /// mutable handle to be encapsulated by the `OwningHandle`.
    unsafe fn to_handle_mut(x: *const Self) -> Self::HandleMut;
}

impl<O, H> OwningHandle<O, H>
where
    O: StableAddress<Target: ToHandle<Handle = H>>,
    H: Deref,
{
    /// Creates a new `OwningHandle` for a type that implements `ToHandle`. For types
    /// that don't implement `ToHandle`, callers may invoke `new_with_fn`, which accepts
    /// a callback to perform the conversion.
    pub fn new(o: O) -> Self {
        OwningHandle::new_with_fn(o, |x| unsafe { O::Target::to_handle(x) })
    }
}

impl<O, H> OwningHandle<O, H>
where
    O: StableAddress<Target: ToHandleMut<HandleMut = H>>,
    H: DerefMut,
{
    /// Creates a new mutable `OwningHandle` for a type that implements `ToHandleMut`.
    pub fn new_mut(o: O) -> Self {
        OwningHandle::new_with_fn(o, |x| unsafe { O::Target::to_handle_mut(x) })
    }
}

impl<O, H> OwningHandle<O, H>
where
    O: StableAddress,
    H: Deref,
{
    /// Creates a new OwningHandle. The provided callback will be invoked with
    /// a pointer to the object owned by `o`, and the returned value is stored
    /// as the object to which this `OwningHandle` will forward `Deref` and
    /// `DerefMut`.
    pub fn new_with_fn<F>(o: O, f: F) -> Self
    where
        F: FnOnce(*const O::Target) -> H,
    {
        let h: H;
        {
            h = f(o.deref() as *const O::Target);
        }

        OwningHandle { handle: h, _owner: o }
    }

    /// Creates a new OwningHandle. The provided callback will be invoked with
    /// a pointer to the object owned by `o`, and the returned value is stored
    /// as the object to which this `OwningHandle` will forward `Deref` and
    /// `DerefMut`.
    pub fn try_new<F, E>(o: O, f: F) -> Result<Self, E>
    where
        F: FnOnce(*const O::Target) -> Result<H, E>,
    {
        let h: H;
        {
            h = f(o.deref() as *const O::Target)?;
        }

        Ok(OwningHandle { handle: h, _owner: o })
    }
}

/////////////////////////////////////////////////////////////////////////////
// std traits
/////////////////////////////////////////////////////////////////////////////

use std::borrow::Borrow;
use std::cmp::Ordering;
use std::fmt::{self, Debug};
use std::hash::{Hash, Hasher};

impl<O, T: ?Sized> Deref for OwningRef<O, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.reference }
    }
}

impl<O, T: ?Sized> Deref for OwningRefMut<O, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.reference }
    }
}

impl<O, T: ?Sized> DerefMut for OwningRefMut<O, T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.reference }
    }
}

unsafe impl<O, T: ?Sized> StableAddress for OwningRef<O, T> {}

impl<O, T: ?Sized> AsRef<T> for OwningRef<O, T> {
    fn as_ref(&self) -> &T {
        self
    }
}

impl<O, T: ?Sized> AsRef<T> for OwningRefMut<O, T> {
    fn as_ref(&self) -> &T {
        self
    }
}

impl<O, T: ?Sized> AsMut<T> for OwningRefMut<O, T> {
    fn as_mut(&mut self) -> &mut T {
        self
    }
}

impl<O, T: ?Sized> Borrow<T> for OwningRef<O, T> {
    fn borrow(&self) -> &T {
        self
    }
}

impl<O, T: ?Sized> From<O> for OwningRef<O, T>
where
    O: StableAddress,
    O: Deref<Target = T>,
{
    fn from(owner: O) -> Self {
        OwningRef::new(owner)
    }
}

impl<O, T: ?Sized> From<O> for OwningRefMut<O, T>
where
    O: StableAddress,
    O: DerefMut<Target = T>,
{
    fn from(owner: O) -> Self {
        OwningRefMut::new(owner)
    }
}

impl<O, T: ?Sized> From<OwningRefMut<O, T>> for OwningRef<O, T>
where
    O: StableAddress,
    O: DerefMut<Target = T>,
{
    fn from(other: OwningRefMut<O, T>) -> Self {
        OwningRef { owner: other.owner, reference: other.reference }
    }
}

// ^ FIXME: Is an Into impl for calling into_inner() possible as well?

impl<O, T: ?Sized> Debug for OwningRef<O, T>
where
    O: Debug,
    T: Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "OwningRef {{ owner: {:?}, reference: {:?} }}", self.owner(), &**self)
    }
}

impl<O, T: ?Sized> Debug for OwningRefMut<O, T>
where
    O: Debug,
    T: Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "OwningRefMut {{ owner: {:?}, reference: {:?} }}", self.owner(), &**self)
    }
}

impl<O, T: ?Sized> Clone for OwningRef<O, T>
where
    O: CloneStableAddress,
{
    fn clone(&self) -> Self {
        OwningRef { owner: self.owner.clone(), reference: self.reference }
    }
}

unsafe impl<O, T: ?Sized> CloneStableAddress for OwningRef<O, T> where O: CloneStableAddress {}

unsafe impl<O, T: ?Sized> Send for OwningRef<O, T>
where
    O: Send,
    for<'a> &'a T: Send,
{
}
unsafe impl<O, T: ?Sized> Sync for OwningRef<O, T>
where
    O: Sync,
    for<'a> &'a T: Sync,
{
}

unsafe impl<O, T: ?Sized> Send for OwningRefMut<O, T>
where
    O: Send,
    for<'a> &'a mut T: Send,
{
}
unsafe impl<O, T: ?Sized> Sync for OwningRefMut<O, T>
where
    O: Sync,
    for<'a> &'a mut T: Sync,
{
}

impl Debug for dyn Erased {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "<Erased>",)
    }
}

impl<O, T: ?Sized> PartialEq for OwningRef<O, T>
where
    T: PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        self.deref().eq(other.deref())
    }
}

impl<O, T: ?Sized> Eq for OwningRef<O, T> where T: Eq {}

impl<O, T: ?Sized> PartialOrd for OwningRef<O, T>
where
    T: PartialOrd,
{
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.deref().partial_cmp(other.deref())
    }
}

impl<O, T: ?Sized> Ord for OwningRef<O, T>
where
    T: Ord,
{
    fn cmp(&self, other: &Self) -> Ordering {
        self.deref().cmp(other.deref())
    }
}

impl<O, T: ?Sized> Hash for OwningRef<O, T>
where
    T: Hash,
{
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.deref().hash(state);
    }
}

impl<O, T: ?Sized> PartialEq for OwningRefMut<O, T>
where
    T: PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        self.deref().eq(other.deref())
    }
}

impl<O, T: ?Sized> Eq for OwningRefMut<O, T> where T: Eq {}

impl<O, T: ?Sized> PartialOrd for OwningRefMut<O, T>
where
    T: PartialOrd,
{
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.deref().partial_cmp(other.deref())
    }
}

impl<O, T: ?Sized> Ord for OwningRefMut<O, T>
where
    T: Ord,
{
    fn cmp(&self, other: &Self) -> Ordering {
        self.deref().cmp(other.deref())
    }
}

impl<O, T: ?Sized> Hash for OwningRefMut<O, T>
where
    T: Hash,
{
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.deref().hash(state);
    }
}

/////////////////////////////////////////////////////////////////////////////
// std types integration and convenience type defs
/////////////////////////////////////////////////////////////////////////////

use std::cell::{Ref, RefCell, RefMut};
use std::rc::Rc;
use std::sync::Arc;
use std::sync::{MutexGuard, RwLockReadGuard, RwLockWriteGuard};

impl<T: 'static> ToHandle for RefCell<T> {
    type Handle = Ref<'static, T>;
    unsafe fn to_handle(x: *const Self) -> Self::Handle {
        (*x).borrow()
    }
}

impl<T: 'static> ToHandleMut for RefCell<T> {
    type HandleMut = RefMut<'static, T>;
    unsafe fn to_handle_mut(x: *const Self) -> Self::HandleMut {
        (*x).borrow_mut()
    }
}

// N.B., implementing ToHandle{,Mut} for Mutex and RwLock requires a decision
// about which handle creation to use (i.e., read() vs try_read()) as well as
// what to do with error results.

/// Typedef of an owning reference that uses a `Box` as the owner.
pub type BoxRef<T, U = T> = OwningRef<Box<T>, U>;
/// Typedef of an owning reference that uses a `Vec` as the owner.
pub type VecRef<T, U = T> = OwningRef<Vec<T>, U>;
/// Typedef of an owning reference that uses a `String` as the owner.
pub type StringRef = OwningRef<String, str>;

/// Typedef of an owning reference that uses an `Rc` as the owner.
pub type RcRef<T, U = T> = OwningRef<Rc<T>, U>;
/// Typedef of an owning reference that uses an `Arc` as the owner.
pub type ArcRef<T, U = T> = OwningRef<Arc<T>, U>;

/// Typedef of an owning reference that uses a `Ref` as the owner.
pub type RefRef<'a, T, U = T> = OwningRef<Ref<'a, T>, U>;
/// Typedef of an owning reference that uses a `RefMut` as the owner.
pub type RefMutRef<'a, T, U = T> = OwningRef<RefMut<'a, T>, U>;
/// Typedef of an owning reference that uses a `MutexGuard` as the owner.
pub type MutexGuardRef<'a, T, U = T> = OwningRef<MutexGuard<'a, T>, U>;
/// Typedef of an owning reference that uses an `RwLockReadGuard` as the owner.
pub type RwLockReadGuardRef<'a, T, U = T> = OwningRef<RwLockReadGuard<'a, T>, U>;
/// Typedef of an owning reference that uses an `RwLockWriteGuard` as the owner.
pub type RwLockWriteGuardRef<'a, T, U = T> = OwningRef<RwLockWriteGuard<'a, T>, U>;

/// Typedef of a mutable owning reference that uses a `Box` as the owner.
pub type BoxRefMut<T, U = T> = OwningRefMut<Box<T>, U>;
/// Typedef of a mutable owning reference that uses a `Vec` as the owner.
pub type VecRefMut<T, U = T> = OwningRefMut<Vec<T>, U>;
/// Typedef of a mutable owning reference that uses a `String` as the owner.
pub type StringRefMut = OwningRefMut<String, str>;

/// Typedef of a mutable owning reference that uses a `RefMut` as the owner.
pub type RefMutRefMut<'a, T, U = T> = OwningRefMut<RefMut<'a, T>, U>;
/// Typedef of a mutable owning reference that uses a `MutexGuard` as the owner.
pub type MutexGuardRefMut<'a, T, U = T> = OwningRefMut<MutexGuard<'a, T>, U>;
/// Typedef of a mutable owning reference that uses an `RwLockWriteGuard` as the owner.
pub type RwLockWriteGuardRefMut<'a, T, U = T> = OwningRef<RwLockWriteGuard<'a, T>, U>;

unsafe impl<'a, T: 'a> IntoErased<'a> for Box<T> {
    type Erased = Box<dyn Erased + 'a>;
    fn into_erased(self) -> Self::Erased {
        self
    }
}
unsafe impl<'a, T: 'a> IntoErased<'a> for Rc<T> {
    type Erased = Rc<dyn Erased + 'a>;
    fn into_erased(self) -> Self::Erased {
        self
    }
}
unsafe impl<'a, T: 'a> IntoErased<'a> for Arc<T> {
    type Erased = Arc<dyn Erased + 'a>;
    fn into_erased(self) -> Self::Erased {
        self
    }
}

unsafe impl<'a, T: Send + 'a> IntoErasedSend<'a> for Box<T> {
    type Erased = Box<dyn Erased + Send + 'a>;
    fn into_erased_send(self) -> Self::Erased {
        self
    }
}

unsafe impl<'a, T: Send + 'a> IntoErasedSendSync<'a> for Box<T> {
    type Erased = Box<dyn Erased + Sync + Send + 'a>;
    fn into_erased_send_sync(self) -> Self::Erased {
        let result: Box<dyn Erased + Send + 'a> = self;
        // This is safe since Erased can always implement Sync
        // Only the destructor is available and it takes &mut self
        unsafe { mem::transmute(result) }
    }
}

unsafe impl<'a, T: Send + Sync + 'a> IntoErasedSendSync<'a> for Arc<T> {
    type Erased = Arc<dyn Erased + Send + Sync + 'a>;
    fn into_erased_send_sync(self) -> Self::Erased {
        self
    }
}

/// Typedef of an owning reference that uses an erased `Box` as the owner.
pub type ErasedBoxRef<U> = OwningRef<Box<dyn Erased>, U>;
/// Typedef of an owning reference that uses an erased `Rc` as the owner.
pub type ErasedRcRef<U> = OwningRef<Rc<dyn Erased>, U>;
/// Typedef of an owning reference that uses an erased `Arc` as the owner.
pub type ErasedArcRef<U> = OwningRef<Arc<dyn Erased>, U>;

/// Typedef of a mutable owning reference that uses an erased `Box` as the owner.
pub type ErasedBoxRefMut<U> = OwningRefMut<Box<dyn Erased>, U>;

#[cfg(test)]
mod tests;