1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
use rustc_apfloat::ieee::{Double, Single};
use rustc_apfloat::Float;
use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
use rustc_target::abi::Size;
use std::fmt;
use std::num::NonZeroU8;

use crate::ty::TyCtxt;

#[derive(Copy, Clone)]
/// A type for representing any integer. Only used for printing.
pub struct ConstInt {
    /// The "untyped" variant of `ConstInt`.
    int: ScalarInt,
    /// Whether the value is of a signed integer type.
    signed: bool,
    /// Whether the value is a `usize` or `isize` type.
    is_ptr_sized_integral: bool,
}

impl ConstInt {
    pub fn new(int: ScalarInt, signed: bool, is_ptr_sized_integral: bool) -> Self {
        Self { int, signed, is_ptr_sized_integral }
    }
}

impl std::fmt::Debug for ConstInt {
    fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let Self { int, signed, is_ptr_sized_integral } = *self;
        let size = int.size().bytes();
        let raw = int.data;
        if signed {
            let bit_size = size * 8;
            let min = 1u128 << (bit_size - 1);
            let max = min - 1;
            if raw == min {
                match (size, is_ptr_sized_integral) {
                    (_, true) => write!(fmt, "isize::MIN"),
                    (1, _) => write!(fmt, "i8::MIN"),
                    (2, _) => write!(fmt, "i16::MIN"),
                    (4, _) => write!(fmt, "i32::MIN"),
                    (8, _) => write!(fmt, "i64::MIN"),
                    (16, _) => write!(fmt, "i128::MIN"),
                    _ => bug!("ConstInt 0x{:x} with size = {} and signed = {}", raw, size, signed),
                }
            } else if raw == max {
                match (size, is_ptr_sized_integral) {
                    (_, true) => write!(fmt, "isize::MAX"),
                    (1, _) => write!(fmt, "i8::MAX"),
                    (2, _) => write!(fmt, "i16::MAX"),
                    (4, _) => write!(fmt, "i32::MAX"),
                    (8, _) => write!(fmt, "i64::MAX"),
                    (16, _) => write!(fmt, "i128::MAX"),
                    _ => bug!("ConstInt 0x{:x} with size = {} and signed = {}", raw, size, signed),
                }
            } else {
                match size {
                    1 => write!(fmt, "{}", raw as i8)?,
                    2 => write!(fmt, "{}", raw as i16)?,
                    4 => write!(fmt, "{}", raw as i32)?,
                    8 => write!(fmt, "{}", raw as i64)?,
                    16 => write!(fmt, "{}", raw as i128)?,
                    _ => bug!("ConstInt 0x{:x} with size = {} and signed = {}", raw, size, signed),
                }
                if fmt.alternate() {
                    match (size, is_ptr_sized_integral) {
                        (_, true) => write!(fmt, "_isize")?,
                        (1, _) => write!(fmt, "_i8")?,
                        (2, _) => write!(fmt, "_i16")?,
                        (4, _) => write!(fmt, "_i32")?,
                        (8, _) => write!(fmt, "_i64")?,
                        (16, _) => write!(fmt, "_i128")?,
                        _ => bug!(),
                    }
                }
                Ok(())
            }
        } else {
            let max = Size::from_bytes(size).truncate(u128::MAX);
            if raw == max {
                match (size, is_ptr_sized_integral) {
                    (_, true) => write!(fmt, "usize::MAX"),
                    (1, _) => write!(fmt, "u8::MAX"),
                    (2, _) => write!(fmt, "u16::MAX"),
                    (4, _) => write!(fmt, "u32::MAX"),
                    (8, _) => write!(fmt, "u64::MAX"),
                    (16, _) => write!(fmt, "u128::MAX"),
                    _ => bug!("ConstInt 0x{:x} with size = {} and signed = {}", raw, size, signed),
                }
            } else {
                match size {
                    1 => write!(fmt, "{}", raw as u8)?,
                    2 => write!(fmt, "{}", raw as u16)?,
                    4 => write!(fmt, "{}", raw as u32)?,
                    8 => write!(fmt, "{}", raw as u64)?,
                    16 => write!(fmt, "{}", raw as u128)?,
                    _ => bug!("ConstInt 0x{:x} with size = {} and signed = {}", raw, size, signed),
                }
                if fmt.alternate() {
                    match (size, is_ptr_sized_integral) {
                        (_, true) => write!(fmt, "_usize")?,
                        (1, _) => write!(fmt, "_u8")?,
                        (2, _) => write!(fmt, "_u16")?,
                        (4, _) => write!(fmt, "_u32")?,
                        (8, _) => write!(fmt, "_u64")?,
                        (16, _) => write!(fmt, "_u128")?,
                        _ => bug!(),
                    }
                }
                Ok(())
            }
        }
    }
}

/// The raw bytes of a simple value.
///
/// This is a packed struct in order to allow this type to be optimally embedded in enums
/// (like Scalar).
#[derive(Clone, Copy, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[repr(packed)]
pub struct ScalarInt {
    /// The first `size` bytes of `data` are the value.
    /// Do not try to read less or more bytes than that. The remaining bytes must be 0.
    data: u128,
    size: NonZeroU8,
}

// Cannot derive these, as the derives take references to the fields, and we
// can't take references to fields of packed structs.
impl<CTX> crate::ty::HashStable<CTX> for ScalarInt {
    fn hash_stable(&self, hcx: &mut CTX, hasher: &mut crate::ty::StableHasher) {
        // Using a block `{self.data}` here to force a copy instead of using `self.data`
        // directly, because `hash_stable` takes `&self` and would thus borrow `self.data`.
        // Since `Self` is a packed struct, that would create a possibly unaligned reference,
        // which is UB.
        { self.data }.hash_stable(hcx, hasher);
        self.size.get().hash_stable(hcx, hasher);
    }
}

impl<S: Encoder> Encodable<S> for ScalarInt {
    fn encode(&self, s: &mut S) {
        s.emit_u128(self.data);
        s.emit_u8(self.size.get());
    }
}

impl<D: Decoder> Decodable<D> for ScalarInt {
    fn decode(d: &mut D) -> ScalarInt {
        ScalarInt { data: d.read_u128(), size: NonZeroU8::new(d.read_u8()).unwrap() }
    }
}

impl ScalarInt {
    pub const TRUE: ScalarInt = ScalarInt { data: 1_u128, size: NonZeroU8::new(1).unwrap() };

    pub const FALSE: ScalarInt = ScalarInt { data: 0_u128, size: NonZeroU8::new(1).unwrap() };

    #[inline]
    pub fn size(self) -> Size {
        Size::from_bytes(self.size.get())
    }

    /// Make sure the `data` fits in `size`.
    /// This is guaranteed by all constructors here, but having had this check saved us from
    /// bugs many times in the past, so keeping it around is definitely worth it.
    #[inline(always)]
    fn check_data(self) {
        // Using a block `{self.data}` here to force a copy instead of using `self.data`
        // directly, because `debug_assert_eq` takes references to its arguments and formatting
        // arguments and would thus borrow `self.data`. Since `Self`
        // is a packed struct, that would create a possibly unaligned reference, which
        // is UB.
        debug_assert_eq!(
            self.size().truncate(self.data),
            { self.data },
            "Scalar value {:#x} exceeds size of {} bytes",
            { self.data },
            self.size
        );
    }

    #[inline]
    pub fn null(size: Size) -> Self {
        Self { data: 0, size: NonZeroU8::new(size.bytes() as u8).unwrap() }
    }

    #[inline]
    pub fn is_null(self) -> bool {
        self.data == 0
    }

    #[inline]
    pub fn try_from_uint(i: impl Into<u128>, size: Size) -> Option<Self> {
        let data = i.into();
        if size.truncate(data) == data {
            Some(Self { data, size: NonZeroU8::new(size.bytes() as u8).unwrap() })
        } else {
            None
        }
    }

    #[inline]
    pub fn try_from_int(i: impl Into<i128>, size: Size) -> Option<Self> {
        let i = i.into();
        // `into` performed sign extension, we have to truncate
        let truncated = size.truncate(i as u128);
        if size.sign_extend(truncated) as i128 == i {
            Some(Self { data: truncated, size: NonZeroU8::new(size.bytes() as u8).unwrap() })
        } else {
            None
        }
    }

    #[inline]
    pub fn assert_bits(self, target_size: Size) -> u128 {
        self.to_bits(target_size).unwrap_or_else(|size| {
            bug!("expected int of size {}, but got size {}", target_size.bytes(), size.bytes())
        })
    }

    #[inline]
    pub fn to_bits(self, target_size: Size) -> Result<u128, Size> {
        assert_ne!(target_size.bytes(), 0, "you should never look at the bits of a ZST");
        if target_size.bytes() == u64::from(self.size.get()) {
            self.check_data();
            Ok(self.data)
        } else {
            Err(self.size())
        }
    }

    #[inline]
    pub fn try_to_machine_usize<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Result<u64, Size> {
        Ok(self.to_bits(tcx.data_layout.pointer_size)? as u64)
    }

    /// Tries to convert the `ScalarInt` to an unsigned integer of the given size.
    /// Fails if the size of the `ScalarInt` is unequal to `size` and returns the
    /// `ScalarInt`s size in that case.
    #[inline]
    pub fn try_to_uint(self, size: Size) -> Result<u128, Size> {
        self.to_bits(size)
    }

    // Tries to convert the `ScalarInt` to `bool`. Fails if the `size` of the `ScalarInt`
    // in not equal to `Size { raw: 1 }` or if the value is not 0 or 1 and returns the `size`
    // value of the `ScalarInt` in that case.
    #[inline]
    pub fn try_to_bool(self) -> Result<bool, Size> {
        match self.try_to_u8()? {
            0 => Ok(false),
            1 => Ok(true),
            _ => Err(self.size()),
        }
    }

    // Tries to convert the `ScalarInt` to `u8`. Fails if the `size` of the `ScalarInt`
    // in not equal to `Size { raw: 1 }` and returns the `size` value of the `ScalarInt` in
    // that case.
    #[inline]
    pub fn try_to_u8(self) -> Result<u8, Size> {
        self.to_bits(Size::from_bits(8)).map(|v| u8::try_from(v).unwrap())
    }

    /// Tries to convert the `ScalarInt` to `u16`. Fails if the size of the `ScalarInt`
    /// in not equal to `Size { raw: 2 }` and returns the `size` value of the `ScalarInt` in
    /// that case.
    #[inline]
    pub fn try_to_u16(self) -> Result<u16, Size> {
        self.to_bits(Size::from_bits(16)).map(|v| u16::try_from(v).unwrap())
    }

    /// Tries to convert the `ScalarInt` to `u32`. Fails if the `size` of the `ScalarInt`
    /// in not equal to `Size { raw: 4 }` and returns the `size` value of the `ScalarInt` in
    /// that case.
    #[inline]
    pub fn try_to_u32(self) -> Result<u32, Size> {
        self.to_bits(Size::from_bits(32)).map(|v| u32::try_from(v).unwrap())
    }

    /// Tries to convert the `ScalarInt` to `u64`. Fails if the `size` of the `ScalarInt`
    /// in not equal to `Size { raw: 8 }` and returns the `size` value of the `ScalarInt` in
    /// that case.
    #[inline]
    pub fn try_to_u64(self) -> Result<u64, Size> {
        self.to_bits(Size::from_bits(64)).map(|v| u64::try_from(v).unwrap())
    }

    /// Tries to convert the `ScalarInt` to `u128`. Fails if the `size` of the `ScalarInt`
    /// in not equal to `Size { raw: 16 }` and returns the `size` value of the `ScalarInt` in
    /// that case.
    #[inline]
    pub fn try_to_u128(self) -> Result<u128, Size> {
        self.to_bits(Size::from_bits(128))
    }

    /// Tries to convert the `ScalarInt` to a signed integer of the given size.
    /// Fails if the size of the `ScalarInt` is unequal to `size` and returns the
    /// `ScalarInt`s size in that case.
    #[inline]
    pub fn try_to_int(self, size: Size) -> Result<i128, Size> {
        let b = self.to_bits(size)?;
        Ok(size.sign_extend(b) as i128)
    }

    /// Tries to convert the `ScalarInt` to i8.
    /// Fails if the size of the `ScalarInt` is unequal to `Size { raw: 1 }`
    /// and returns the `ScalarInt`s size in that case.
    pub fn try_to_i8(self) -> Result<i8, Size> {
        self.try_to_int(Size::from_bits(8)).map(|v| i8::try_from(v).unwrap())
    }

    /// Tries to convert the `ScalarInt` to i16.
    /// Fails if the size of the `ScalarInt` is unequal to `Size { raw: 2 }`
    /// and returns the `ScalarInt`s size in that case.
    pub fn try_to_i16(self) -> Result<i16, Size> {
        self.try_to_int(Size::from_bits(16)).map(|v| i16::try_from(v).unwrap())
    }

    /// Tries to convert the `ScalarInt` to i32.
    /// Fails if the size of the `ScalarInt` is unequal to `Size { raw: 4 }`
    /// and returns the `ScalarInt`s size in that case.
    pub fn try_to_i32(self) -> Result<i32, Size> {
        self.try_to_int(Size::from_bits(32)).map(|v| i32::try_from(v).unwrap())
    }

    /// Tries to convert the `ScalarInt` to i64.
    /// Fails if the size of the `ScalarInt` is unequal to `Size { raw: 8 }`
    /// and returns the `ScalarInt`s size in that case.
    pub fn try_to_i64(self) -> Result<i64, Size> {
        self.try_to_int(Size::from_bits(64)).map(|v| i64::try_from(v).unwrap())
    }

    /// Tries to convert the `ScalarInt` to i128.
    /// Fails if the size of the `ScalarInt` is unequal to `Size { raw: 16 }`
    /// and returns the `ScalarInt`s size in that case.
    pub fn try_to_i128(self) -> Result<i128, Size> {
        self.try_to_int(Size::from_bits(128)).map(|v| i128::try_from(v).unwrap())
    }
}

macro_rules! from {
    ($($ty:ty),*) => {
        $(
            impl From<$ty> for ScalarInt {
                #[inline]
                fn from(u: $ty) -> Self {
                    Self {
                        data: u128::from(u),
                        size: NonZeroU8::new(std::mem::size_of::<$ty>() as u8).unwrap(),
                    }
                }
            }
        )*
    }
}

macro_rules! try_from {
    ($($ty:ty),*) => {
        $(
            impl TryFrom<ScalarInt> for $ty {
                type Error = Size;
                #[inline]
                fn try_from(int: ScalarInt) -> Result<Self, Size> {
                    // The `unwrap` cannot fail because to_bits (if it succeeds)
                    // is guaranteed to return a value that fits into the size.
                    int.to_bits(Size::from_bytes(std::mem::size_of::<$ty>()))
                       .map(|u| u.try_into().unwrap())
                }
            }
        )*
    }
}

from!(u8, u16, u32, u64, u128, bool);
try_from!(u8, u16, u32, u64, u128);

impl TryFrom<ScalarInt> for bool {
    type Error = Size;
    #[inline]
    fn try_from(int: ScalarInt) -> Result<Self, Size> {
        int.to_bits(Size::from_bytes(1)).and_then(|u| match u {
            0 => Ok(false),
            1 => Ok(true),
            _ => Err(Size::from_bytes(1)),
        })
    }
}

impl From<char> for ScalarInt {
    #[inline]
    fn from(c: char) -> Self {
        Self { data: c as u128, size: NonZeroU8::new(std::mem::size_of::<char>() as u8).unwrap() }
    }
}

/// Error returned when a conversion from ScalarInt to char fails.
#[derive(Debug)]
pub struct CharTryFromScalarInt;

impl TryFrom<ScalarInt> for char {
    type Error = CharTryFromScalarInt;

    #[inline]
    fn try_from(int: ScalarInt) -> Result<Self, Self::Error> {
        let Ok(bits) = int.to_bits(Size::from_bytes(std::mem::size_of::<char>())) else  {
            return Err(CharTryFromScalarInt);
        };
        match char::from_u32(bits.try_into().unwrap()) {
            Some(c) => Ok(c),
            None => Err(CharTryFromScalarInt),
        }
    }
}

impl From<Single> for ScalarInt {
    #[inline]
    fn from(f: Single) -> Self {
        // We trust apfloat to give us properly truncated data.
        Self { data: f.to_bits(), size: NonZeroU8::new((Single::BITS / 8) as u8).unwrap() }
    }
}

impl TryFrom<ScalarInt> for Single {
    type Error = Size;
    #[inline]
    fn try_from(int: ScalarInt) -> Result<Self, Size> {
        int.to_bits(Size::from_bytes(4)).map(Self::from_bits)
    }
}

impl From<Double> for ScalarInt {
    #[inline]
    fn from(f: Double) -> Self {
        // We trust apfloat to give us properly truncated data.
        Self { data: f.to_bits(), size: NonZeroU8::new((Double::BITS / 8) as u8).unwrap() }
    }
}

impl TryFrom<ScalarInt> for Double {
    type Error = Size;
    #[inline]
    fn try_from(int: ScalarInt) -> Result<Self, Size> {
        int.to_bits(Size::from_bytes(8)).map(Self::from_bits)
    }
}

impl fmt::Debug for ScalarInt {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Dispatch to LowerHex below.
        write!(f, "0x{:x}", self)
    }
}

impl fmt::LowerHex for ScalarInt {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.check_data();
        if f.alternate() {
            // Like regular ints, alternate flag adds leading `0x`.
            write!(f, "0x")?;
        }
        // Format as hex number wide enough to fit any value of the given `size`.
        // So data=20, size=1 will be "0x14", but with size=4 it'll be "0x00000014".
        // Using a block `{self.data}` here to force a copy instead of using `self.data`
        // directly, because `write!` takes references to its formatting arguments and
        // would thus borrow `self.data`. Since `Self`
        // is a packed struct, that would create a possibly unaligned reference, which
        // is UB.
        write!(f, "{:01$x}", { self.data }, self.size.get() as usize * 2)
    }
}

impl fmt::UpperHex for ScalarInt {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.check_data();
        // Format as hex number wide enough to fit any value of the given `size`.
        // So data=20, size=1 will be "0x14", but with size=4 it'll be "0x00000014".
        // Using a block `{self.data}` here to force a copy instead of using `self.data`
        // directly, because `write!` takes references to its formatting arguments and
        // would thus borrow `self.data`. Since `Self`
        // is a packed struct, that would create a possibly unaligned reference, which
        // is UB.
        write!(f, "{:01$X}", { self.data }, self.size.get() as usize * 2)
    }
}

impl fmt::Display for ScalarInt {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.check_data();
        write!(f, "{}", { self.data })
    }
}