1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::LocalDefId;
use rustc_middle::mir::interpret::{LitToConstError, LitToConstInput};
use rustc_middle::thir::visit;
use rustc_middle::thir::visit::Visitor;
use rustc_middle::ty::abstract_const::CastKind;
use rustc_middle::ty::{self, Expr, TyCtxt, TypeVisitable};
use rustc_middle::{mir, thir};
use rustc_span::Span;
use rustc_target::abi::VariantIdx;

use std::iter;

use crate::errors::{GenericConstantTooComplex, GenericConstantTooComplexSub};

/// Destructures array, ADT or tuple constants into the constants
/// of their fields.
pub(crate) fn destructure_const<'tcx>(
    tcx: TyCtxt<'tcx>,
    const_: ty::Const<'tcx>,
) -> ty::DestructuredConst<'tcx> {
    let ty::ConstKind::Value(valtree) = const_.kind() else {
        bug!("cannot destructure constant {:?}", const_)
    };

    let branches = match valtree {
        ty::ValTree::Branch(b) => b,
        _ => bug!("cannot destructure constant {:?}", const_),
    };

    let (fields, variant) = match const_.ty().kind() {
        ty::Array(inner_ty, _) | ty::Slice(inner_ty) => {
            // construct the consts for the elements of the array/slice
            let field_consts =
                branches.iter().map(|b| tcx.mk_const(*b, *inner_ty)).collect::<Vec<_>>();
            debug!(?field_consts);

            (field_consts, None)
        }
        ty::Adt(def, _) if def.variants().is_empty() => bug!("unreachable"),
        ty::Adt(def, substs) => {
            let (variant_idx, branches) = if def.is_enum() {
                let (head, rest) = branches.split_first().unwrap();
                (VariantIdx::from_u32(head.unwrap_leaf().try_to_u32().unwrap()), rest)
            } else {
                (VariantIdx::from_u32(0), branches)
            };
            let fields = &def.variant(variant_idx).fields;
            let mut field_consts = Vec::with_capacity(fields.len());

            for (field, field_valtree) in iter::zip(fields, branches) {
                let field_ty = field.ty(tcx, substs);
                let field_const = tcx.mk_const(*field_valtree, field_ty);
                field_consts.push(field_const);
            }
            debug!(?field_consts);

            (field_consts, Some(variant_idx))
        }
        ty::Tuple(elem_tys) => {
            let fields = iter::zip(*elem_tys, branches)
                .map(|(elem_ty, elem_valtree)| tcx.mk_const(*elem_valtree, elem_ty))
                .collect::<Vec<_>>();

            (fields, None)
        }
        _ => bug!("cannot destructure constant {:?}", const_),
    };

    let fields = tcx.arena.alloc_from_iter(fields.into_iter());

    ty::DestructuredConst { variant, fields }
}

/// We do not allow all binary operations in abstract consts, so filter disallowed ones.
fn check_binop(op: mir::BinOp) -> bool {
    use mir::BinOp::*;
    match op {
        Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Shl | Shr | Eq | Lt | Le | Ne
        | Ge | Gt => true,
        Offset => false,
    }
}

/// While we currently allow all unary operations, we still want to explicitly guard against
/// future changes here.
fn check_unop(op: mir::UnOp) -> bool {
    use mir::UnOp::*;
    match op {
        Not | Neg => true,
    }
}

fn recurse_build<'tcx>(
    tcx: TyCtxt<'tcx>,
    body: &thir::Thir<'tcx>,
    node: thir::ExprId,
    root_span: Span,
) -> Result<ty::Const<'tcx>, ErrorGuaranteed> {
    use thir::ExprKind;
    let node = &body.exprs[node];

    let maybe_supported_error = |a| maybe_supported_error(tcx, a, root_span);
    let error = |a| error(tcx, a, root_span);

    Ok(match &node.kind {
        // I dont know if handling of these 3 is correct
        &ExprKind::Scope { value, .. } => recurse_build(tcx, body, value, root_span)?,
        &ExprKind::PlaceTypeAscription { source, .. }
        | &ExprKind::ValueTypeAscription { source, .. } => {
            recurse_build(tcx, body, source, root_span)?
        }
        &ExprKind::Literal { lit, neg } => {
            let sp = node.span;
            match tcx.at(sp).lit_to_const(LitToConstInput { lit: &lit.node, ty: node.ty, neg }) {
                Ok(c) => c,
                Err(LitToConstError::Reported(guar)) => {
                    tcx.const_error_with_guaranteed(node.ty, guar)
                }
                Err(LitToConstError::TypeError) => {
                    bug!("encountered type error in lit_to_const")
                }
            }
        }
        &ExprKind::NonHirLiteral { lit, user_ty: _ } => {
            let val = ty::ValTree::from_scalar_int(lit);
            tcx.mk_const(val, node.ty)
        }
        &ExprKind::ZstLiteral { user_ty: _ } => {
            let val = ty::ValTree::zst();
            tcx.mk_const(val, node.ty)
        }
        &ExprKind::NamedConst { def_id, substs, user_ty: _ } => {
            let uneval = ty::UnevaluatedConst::new(ty::WithOptConstParam::unknown(def_id), substs);
            tcx.mk_const(uneval, node.ty)
        }
        ExprKind::ConstParam { param, .. } => tcx.mk_const(*param, node.ty),

        ExprKind::Call { fun, args, .. } => {
            let fun = recurse_build(tcx, body, *fun, root_span)?;

            let mut new_args = Vec::<ty::Const<'tcx>>::with_capacity(args.len());
            for &id in args.iter() {
                new_args.push(recurse_build(tcx, body, id, root_span)?);
            }
            let new_args = tcx.mk_const_list(new_args.iter());
            tcx.mk_const(Expr::FunctionCall(fun, new_args), node.ty)
        }
        &ExprKind::Binary { op, lhs, rhs } if check_binop(op) => {
            let lhs = recurse_build(tcx, body, lhs, root_span)?;
            let rhs = recurse_build(tcx, body, rhs, root_span)?;
            tcx.mk_const(Expr::Binop(op, lhs, rhs), node.ty)
        }
        &ExprKind::Unary { op, arg } if check_unop(op) => {
            let arg = recurse_build(tcx, body, arg, root_span)?;
            tcx.mk_const(Expr::UnOp(op, arg), node.ty)
        }
        // This is necessary so that the following compiles:
        //
        // ```
        // fn foo<const N: usize>(a: [(); N + 1]) {
        //     bar::<{ N + 1 }>();
        // }
        // ```
        ExprKind::Block { block } => {
            if let thir::Block { stmts: box [], expr: Some(e), .. } = &body.blocks[*block] {
                recurse_build(tcx, body, *e, root_span)?
            } else {
                maybe_supported_error(GenericConstantTooComplexSub::BlockNotSupported(node.span))?
            }
        }
        // `ExprKind::Use` happens when a `hir::ExprKind::Cast` is a
        // "coercion cast" i.e. using a coercion or is a no-op.
        // This is important so that `N as usize as usize` doesnt unify with `N as usize`. (untested)
        &ExprKind::Use { source } => {
            let arg = recurse_build(tcx, body, source, root_span)?;
            tcx.mk_const(Expr::Cast(CastKind::Use, arg, node.ty), node.ty)
        }
        &ExprKind::Cast { source } => {
            let arg = recurse_build(tcx, body, source, root_span)?;
            tcx.mk_const(Expr::Cast(CastKind::As, arg, node.ty), node.ty)
        }
        ExprKind::Borrow { arg, .. } => {
            let arg_node = &body.exprs[*arg];

            // Skip reborrows for now until we allow Deref/Borrow/AddressOf
            // expressions.
            // FIXME(generic_const_exprs): Verify/explain why this is sound
            if let ExprKind::Deref { arg } = arg_node.kind {
                recurse_build(tcx, body, arg, root_span)?
            } else {
                maybe_supported_error(GenericConstantTooComplexSub::BorrowNotSupported(node.span))?
            }
        }
        // FIXME(generic_const_exprs): We may want to support these.
        ExprKind::AddressOf { .. } | ExprKind::Deref { .. } => maybe_supported_error(
            GenericConstantTooComplexSub::AddressAndDerefNotSupported(node.span),
        )?,
        ExprKind::Repeat { .. } | ExprKind::Array { .. } => {
            maybe_supported_error(GenericConstantTooComplexSub::ArrayNotSupported(node.span))?
        }
        ExprKind::NeverToAny { .. } => {
            maybe_supported_error(GenericConstantTooComplexSub::NeverToAnyNotSupported(node.span))?
        }
        ExprKind::Tuple { .. } => {
            maybe_supported_error(GenericConstantTooComplexSub::TupleNotSupported(node.span))?
        }
        ExprKind::Index { .. } => {
            maybe_supported_error(GenericConstantTooComplexSub::IndexNotSupported(node.span))?
        }
        ExprKind::Field { .. } => {
            maybe_supported_error(GenericConstantTooComplexSub::FieldNotSupported(node.span))?
        }
        ExprKind::ConstBlock { .. } => {
            maybe_supported_error(GenericConstantTooComplexSub::ConstBlockNotSupported(node.span))?
        }
        ExprKind::Adt(_) => {
            maybe_supported_error(GenericConstantTooComplexSub::AdtNotSupported(node.span))?
        }
        // dont know if this is correct
        ExprKind::Pointer { .. } => {
            error(GenericConstantTooComplexSub::PointerNotSupported(node.span))?
        }
        ExprKind::Yield { .. } => {
            error(GenericConstantTooComplexSub::YieldNotSupported(node.span))?
        }
        ExprKind::Continue { .. } | ExprKind::Break { .. } | ExprKind::Loop { .. } => {
            error(GenericConstantTooComplexSub::LoopNotSupported(node.span))?
        }
        ExprKind::Box { .. } => error(GenericConstantTooComplexSub::BoxNotSupported(node.span))?,

        ExprKind::Unary { .. } => unreachable!(),
        // we handle valid unary/binary ops above
        ExprKind::Binary { .. } => {
            error(GenericConstantTooComplexSub::BinaryNotSupported(node.span))?
        }
        ExprKind::LogicalOp { .. } => {
            error(GenericConstantTooComplexSub::LogicalOpNotSupported(node.span))?
        }
        ExprKind::Assign { .. } | ExprKind::AssignOp { .. } => {
            error(GenericConstantTooComplexSub::AssignNotSupported(node.span))?
        }
        ExprKind::Closure { .. } | ExprKind::Return { .. } => {
            error(GenericConstantTooComplexSub::ClosureAndReturnNotSupported(node.span))?
        }
        // let expressions imply control flow
        ExprKind::Match { .. } | ExprKind::If { .. } | ExprKind::Let { .. } => {
            error(GenericConstantTooComplexSub::ControlFlowNotSupported(node.span))?
        }
        ExprKind::InlineAsm { .. } => {
            error(GenericConstantTooComplexSub::InlineAsmNotSupported(node.span))?
        }

        // we dont permit let stmts so `VarRef` and `UpvarRef` cant happen
        ExprKind::VarRef { .. }
        | ExprKind::UpvarRef { .. }
        | ExprKind::StaticRef { .. }
        | ExprKind::ThreadLocalRef(_) => {
            error(GenericConstantTooComplexSub::OperationNotSupported(node.span))?
        }
    })
}

struct IsThirPolymorphic<'a, 'tcx> {
    is_poly: bool,
    thir: &'a thir::Thir<'tcx>,
}

fn error<'tcx>(
    tcx: TyCtxt<'tcx>,
    sub: GenericConstantTooComplexSub,
    root_span: Span,
) -> Result<!, ErrorGuaranteed> {
    let reported = tcx.sess.emit_err(GenericConstantTooComplex {
        span: root_span,
        maybe_supported: None,
        sub,
    });

    Err(reported)
}

fn maybe_supported_error<'tcx>(
    tcx: TyCtxt<'tcx>,
    sub: GenericConstantTooComplexSub,
    root_span: Span,
) -> Result<!, ErrorGuaranteed> {
    let reported = tcx.sess.emit_err(GenericConstantTooComplex {
        span: root_span,
        maybe_supported: Some(()),
        sub,
    });

    Err(reported)
}

impl<'a, 'tcx> IsThirPolymorphic<'a, 'tcx> {
    fn expr_is_poly(&mut self, expr: &thir::Expr<'tcx>) -> bool {
        if expr.ty.has_non_region_param() {
            return true;
        }

        match expr.kind {
            thir::ExprKind::NamedConst { substs, .. } => substs.has_non_region_param(),
            thir::ExprKind::ConstParam { .. } => true,
            thir::ExprKind::Repeat { value, count } => {
                self.visit_expr(&self.thir()[value]);
                count.has_non_region_param()
            }
            _ => false,
        }
    }
    fn pat_is_poly(&mut self, pat: &thir::Pat<'tcx>) -> bool {
        if pat.ty.has_non_region_param() {
            return true;
        }

        match pat.kind {
            thir::PatKind::Constant { value } => value.has_non_region_param(),
            thir::PatKind::Range(box thir::PatRange { lo, hi, .. }) => {
                lo.has_non_region_param() || hi.has_non_region_param()
            }
            _ => false,
        }
    }
}

impl<'a, 'tcx> visit::Visitor<'a, 'tcx> for IsThirPolymorphic<'a, 'tcx> {
    fn thir(&self) -> &'a thir::Thir<'tcx> {
        &self.thir
    }

    #[instrument(skip(self), level = "debug")]
    fn visit_expr(&mut self, expr: &thir::Expr<'tcx>) {
        self.is_poly |= self.expr_is_poly(expr);
        if !self.is_poly {
            visit::walk_expr(self, expr)
        }
    }

    #[instrument(skip(self), level = "debug")]
    fn visit_pat(&mut self, pat: &thir::Pat<'tcx>) {
        self.is_poly |= self.pat_is_poly(pat);
        if !self.is_poly {
            visit::walk_pat(self, pat);
        }
    }
}

/// Builds an abstract const, do not use this directly, but use `AbstractConst::new` instead.
pub fn thir_abstract_const<'tcx>(
    tcx: TyCtxt<'tcx>,
    def: ty::WithOptConstParam<LocalDefId>,
) -> Result<Option<ty::Const<'tcx>>, ErrorGuaranteed> {
    if tcx.features().generic_const_exprs {
        match tcx.def_kind(def.did) {
            // FIXME(generic_const_exprs): We currently only do this for anonymous constants,
            // meaning that we do not look into associated constants. I(@lcnr) am not yet sure whether
            // we want to look into them or treat them as opaque projections.
            //
            // Right now we do neither of that and simply always fail to unify them.
            DefKind::AnonConst | DefKind::InlineConst => (),
            _ => return Ok(None),
        }

        let body = tcx.thir_body(def)?;
        let (body, body_id) = (&*body.0.borrow(), body.1);

        let mut is_poly_vis = IsThirPolymorphic { is_poly: false, thir: body };
        visit::walk_expr(&mut is_poly_vis, &body[body_id]);
        if !is_poly_vis.is_poly {
            return Ok(None);
        }

        let root_span = body.exprs[body_id].span;

        Some(recurse_build(tcx, body, body_id, root_span)).transpose()
    } else {
        Ok(None)
    }
}

pub fn provide(providers: &mut ty::query::Providers) {
    *providers = ty::query::Providers {
        destructure_const,
        thir_abstract_const: |tcx, def_id| {
            let def_id = def_id.expect_local();
            if let Some(def) = ty::WithOptConstParam::try_lookup(def_id, tcx) {
                tcx.thir_abstract_const_of_const_arg(def)
            } else {
                thir_abstract_const(tcx, ty::WithOptConstParam::unknown(def_id))
            }
        },
        thir_abstract_const_of_const_arg: |tcx, (did, param_did)| {
            thir_abstract_const(
                tcx,
                ty::WithOptConstParam { did, const_param_did: Some(param_did) },
            )
        },
        ..*providers
    };
}