1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
//! This code is kind of an alternate way of doing subtyping,
//! supertyping, and type equating, distinct from the `combine.rs`
//! code but very similar in its effect and design. Eventually the two
//! ought to be merged. This code is intended for use in NLL and chalk.
//!
//! Here are the key differences:
//!
//! - This code may choose to bypass some checks (e.g., the occurs check)
//!   in the case where we know that there are no unbound type inference
//!   variables. This is the case for NLL, because at NLL time types are fully
//!   inferred up-to regions.
//! - This code uses "universes" to handle higher-ranked regions and
//!   not the leak-check. This is "more correct" than what rustc does
//!   and we are generally migrating in this direction, but NLL had to
//!   get there first.
//!
//! Also, this code assumes that there are no bound types at all, not even
//! free ones. This is ok because:
//! - we are not relating anything quantified over some type variable
//! - we will have instantiated all the bound type vars already (the one
//!   thing we relate in chalk are basically domain goals and their
//!   constituents)

use crate::infer::combine::ConstEquateRelation;
use crate::infer::InferCtxt;
use crate::infer::{ConstVarValue, ConstVariableValue};
use crate::infer::{TypeVariableOrigin, TypeVariableOriginKind};
use crate::traits::{Obligation, PredicateObligation};
use rustc_data_structures::fx::FxHashMap;
use rustc_middle::traits::ObligationCause;
use rustc_middle::ty::error::TypeError;
use rustc_middle::ty::relate::{self, Relate, RelateResult, TypeRelation};
use rustc_middle::ty::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor};
use rustc_middle::ty::{self, InferConst, Ty, TyCtxt};
use rustc_span::Span;
use std::fmt::Debug;
use std::ops::ControlFlow;

#[derive(PartialEq)]
pub enum NormalizationStrategy {
    Lazy,
    Eager,
}

pub struct TypeRelating<'me, 'tcx, D>
where
    D: TypeRelatingDelegate<'tcx>,
{
    infcx: &'me InferCtxt<'tcx>,

    /// Callback to use when we deduce an outlives relationship.
    delegate: D,

    /// How are we relating `a` and `b`?
    ///
    /// - Covariant means `a <: b`.
    /// - Contravariant means `b <: a`.
    /// - Invariant means `a == b.
    /// - Bivariant means that it doesn't matter.
    ambient_variance: ty::Variance,

    ambient_variance_info: ty::VarianceDiagInfo<'tcx>,

    /// When we pass through a set of binders (e.g., when looking into
    /// a `fn` type), we push a new bound region scope onto here. This
    /// will contain the instantiated region for each region in those
    /// binders. When we then encounter a `ReLateBound(d, br)`, we can
    /// use the De Bruijn index `d` to find the right scope, and then
    /// bound region name `br` to find the specific instantiation from
    /// within that scope. See `replace_bound_region`.
    ///
    /// This field stores the instantiations for late-bound regions in
    /// the `a` type.
    a_scopes: Vec<BoundRegionScope<'tcx>>,

    /// Same as `a_scopes`, but for the `b` type.
    b_scopes: Vec<BoundRegionScope<'tcx>>,
}

pub trait TypeRelatingDelegate<'tcx> {
    fn param_env(&self) -> ty::ParamEnv<'tcx>;
    fn span(&self) -> Span;

    /// Push a constraint `sup: sub` -- this constraint must be
    /// satisfied for the two types to be related. `sub` and `sup` may
    /// be regions from the type or new variables created through the
    /// delegate.
    fn push_outlives(
        &mut self,
        sup: ty::Region<'tcx>,
        sub: ty::Region<'tcx>,
        info: ty::VarianceDiagInfo<'tcx>,
    );

    fn register_obligations(&mut self, obligations: Vec<PredicateObligation<'tcx>>);

    /// Creates a new universe index. Used when instantiating placeholders.
    fn create_next_universe(&mut self) -> ty::UniverseIndex;

    /// Creates a new region variable representing a higher-ranked
    /// region that is instantiated existentially. This creates an
    /// inference variable, typically.
    ///
    /// So e.g., if you have `for<'a> fn(..) <: for<'b> fn(..)`, then
    /// we will invoke this method to instantiate `'a` with an
    /// inference variable (though `'b` would be instantiated first,
    /// as a placeholder).
    fn next_existential_region_var(&mut self, was_placeholder: bool) -> ty::Region<'tcx>;

    /// Creates a new region variable representing a
    /// higher-ranked region that is instantiated universally.
    /// This creates a new region placeholder, typically.
    ///
    /// So e.g., if you have `for<'a> fn(..) <: for<'b> fn(..)`, then
    /// we will invoke this method to instantiate `'b` with a
    /// placeholder region.
    fn next_placeholder_region(&mut self, placeholder: ty::PlaceholderRegion) -> ty::Region<'tcx>;

    /// Creates a new existential region in the given universe. This
    /// is used when handling subtyping and type variables -- if we
    /// have that `?X <: Foo<'a>`, for example, we would instantiate
    /// `?X` with a type like `Foo<'?0>` where `'?0` is a fresh
    /// existential variable created by this function. We would then
    /// relate `Foo<'?0>` with `Foo<'a>` (and probably add an outlives
    /// relation stating that `'?0: 'a`).
    fn generalize_existential(&mut self, universe: ty::UniverseIndex) -> ty::Region<'tcx>;

    /// Define the normalization strategy to use, eager or lazy.
    fn normalization() -> NormalizationStrategy;

    /// Enables some optimizations if we do not expect inference variables
    /// in the RHS of the relation.
    fn forbid_inference_vars() -> bool;
}

#[derive(Clone, Debug, Default)]
struct BoundRegionScope<'tcx> {
    map: FxHashMap<ty::BoundRegion, ty::Region<'tcx>>,
}

#[derive(Copy, Clone)]
struct UniversallyQuantified(bool);

impl<'me, 'tcx, D> TypeRelating<'me, 'tcx, D>
where
    D: TypeRelatingDelegate<'tcx>,
{
    pub fn new(infcx: &'me InferCtxt<'tcx>, delegate: D, ambient_variance: ty::Variance) -> Self {
        Self {
            infcx,
            delegate,
            ambient_variance,
            ambient_variance_info: ty::VarianceDiagInfo::default(),
            a_scopes: vec![],
            b_scopes: vec![],
        }
    }

    fn ambient_covariance(&self) -> bool {
        match self.ambient_variance {
            ty::Variance::Covariant | ty::Variance::Invariant => true,
            ty::Variance::Contravariant | ty::Variance::Bivariant => false,
        }
    }

    fn ambient_contravariance(&self) -> bool {
        match self.ambient_variance {
            ty::Variance::Contravariant | ty::Variance::Invariant => true,
            ty::Variance::Covariant | ty::Variance::Bivariant => false,
        }
    }

    fn create_scope(
        &mut self,
        value: ty::Binder<'tcx, impl Relate<'tcx>>,
        universally_quantified: UniversallyQuantified,
    ) -> BoundRegionScope<'tcx> {
        let mut scope = BoundRegionScope::default();

        // Create a callback that creates (via the delegate) either an
        // existential or placeholder region as needed.
        let mut next_region = {
            let delegate = &mut self.delegate;
            let mut lazy_universe = None;
            move |br: ty::BoundRegion| {
                if universally_quantified.0 {
                    // The first time this closure is called, create a
                    // new universe for the placeholders we will make
                    // from here out.
                    let universe = lazy_universe.unwrap_or_else(|| {
                        let universe = delegate.create_next_universe();
                        lazy_universe = Some(universe);
                        universe
                    });

                    let placeholder = ty::PlaceholderRegion { universe, name: br.kind };
                    delegate.next_placeholder_region(placeholder)
                } else {
                    delegate.next_existential_region_var(true)
                }
            }
        };

        value.skip_binder().visit_with(&mut ScopeInstantiator {
            next_region: &mut next_region,
            target_index: ty::INNERMOST,
            bound_region_scope: &mut scope,
        });

        scope
    }

    /// When we encounter binders during the type traversal, we record
    /// the value to substitute for each of the things contained in
    /// that binder. (This will be either a universal placeholder or
    /// an existential inference variable.) Given the De Bruijn index
    /// `debruijn` (and name `br`) of some binder we have now
    /// encountered, this routine finds the value that we instantiated
    /// the region with; to do so, it indexes backwards into the list
    /// of ambient scopes `scopes`.
    fn lookup_bound_region(
        debruijn: ty::DebruijnIndex,
        br: &ty::BoundRegion,
        first_free_index: ty::DebruijnIndex,
        scopes: &[BoundRegionScope<'tcx>],
    ) -> ty::Region<'tcx> {
        // The debruijn index is a "reverse index" into the
        // scopes listing. So when we have INNERMOST (0), we
        // want the *last* scope pushed, and so forth.
        let debruijn_index = debruijn.index() - first_free_index.index();
        let scope = &scopes[scopes.len() - debruijn_index - 1];

        // Find this bound region in that scope to map to a
        // particular region.
        scope.map[br]
    }

    /// If `r` is a bound region, find the scope in which it is bound
    /// (from `scopes`) and return the value that we instantiated it
    /// with. Otherwise just return `r`.
    fn replace_bound_region(
        &self,
        r: ty::Region<'tcx>,
        first_free_index: ty::DebruijnIndex,
        scopes: &[BoundRegionScope<'tcx>],
    ) -> ty::Region<'tcx> {
        debug!("replace_bound_regions(scopes={:?})", scopes);
        if let ty::ReLateBound(debruijn, br) = *r {
            Self::lookup_bound_region(debruijn, &br, first_free_index, scopes)
        } else {
            r
        }
    }

    /// Push a new outlives requirement into our output set of
    /// constraints.
    fn push_outlives(
        &mut self,
        sup: ty::Region<'tcx>,
        sub: ty::Region<'tcx>,
        info: ty::VarianceDiagInfo<'tcx>,
    ) {
        debug!("push_outlives({:?}: {:?})", sup, sub);

        self.delegate.push_outlives(sup, sub, info);
    }

    /// Relate a projection type and some value type lazily. This will always
    /// succeed, but we push an additional `ProjectionEq` goal depending
    /// on the value type:
    /// - if the value type is any type `T` which is not a projection, we push
    ///   `ProjectionEq(projection = T)`.
    /// - if the value type is another projection `other_projection`, we create
    ///   a new inference variable `?U` and push the two goals
    ///   `ProjectionEq(projection = ?U)`, `ProjectionEq(other_projection = ?U)`.
    fn relate_projection_ty(
        &mut self,
        projection_ty: ty::AliasTy<'tcx>,
        value_ty: Ty<'tcx>,
    ) -> Ty<'tcx> {
        use rustc_span::DUMMY_SP;

        match *value_ty.kind() {
            ty::Alias(ty::Projection, other_projection_ty) => {
                let var = self.infcx.next_ty_var(TypeVariableOrigin {
                    kind: TypeVariableOriginKind::MiscVariable,
                    span: DUMMY_SP,
                });
                // FIXME(lazy-normalization): This will always ICE, because the recursive
                // call will end up in the _ arm below.
                self.relate_projection_ty(projection_ty, var);
                self.relate_projection_ty(other_projection_ty, var);
                var
            }

            _ => bug!("should never be invoked with eager normalization"),
        }
    }

    /// Relate a type inference variable with a value type. This works
    /// by creating a "generalization" G of the value where all the
    /// lifetimes are replaced with fresh inference values. This
    /// generalization G becomes the value of the inference variable,
    /// and is then related in turn to the value. So e.g. if you had
    /// `vid = ?0` and `value = &'a u32`, we might first instantiate
    /// `?0` to a type like `&'0 u32` where `'0` is a fresh variable,
    /// and then relate `&'0 u32` with `&'a u32` (resulting in
    /// relations between `'0` and `'a`).
    ///
    /// The variable `pair` can be either a `(vid, ty)` or `(ty, vid)`
    /// -- in other words, it is always an (unresolved) inference
    /// variable `vid` and a type `ty` that are being related, but the
    /// vid may appear either as the "a" type or the "b" type,
    /// depending on where it appears in the tuple. The trait
    /// `VidValuePair` lets us work with the vid/type while preserving
    /// the "sidedness" when necessary -- the sidedness is relevant in
    /// particular for the variance and set of in-scope things.
    fn relate_ty_var<PAIR: VidValuePair<'tcx>>(
        &mut self,
        pair: PAIR,
    ) -> RelateResult<'tcx, Ty<'tcx>> {
        debug!("relate_ty_var({:?})", pair);

        let vid = pair.vid();
        let value_ty = pair.value_ty();

        // FIXME(invariance) -- this logic assumes invariance, but that is wrong.
        // This only presently applies to chalk integration, as NLL
        // doesn't permit type variables to appear on both sides (and
        // doesn't use lazy norm).
        match *value_ty.kind() {
            ty::Infer(ty::TyVar(value_vid)) => {
                // Two type variables: just equate them.
                self.infcx.inner.borrow_mut().type_variables().equate(vid, value_vid);
                return Ok(value_ty);
            }

            ty::Alias(ty::Projection, projection_ty)
                if D::normalization() == NormalizationStrategy::Lazy =>
            {
                return Ok(self.relate_projection_ty(projection_ty, self.infcx.tcx.mk_ty_var(vid)));
            }

            _ => (),
        }

        let generalized_ty = self.generalize_value(value_ty, vid)?;
        debug!("relate_ty_var: generalized_ty = {:?}", generalized_ty);

        if D::forbid_inference_vars() {
            // In NLL, we don't have type inference variables
            // floating around, so we can do this rather imprecise
            // variant of the occurs-check.
            assert!(!generalized_ty.has_non_region_infer());
        }

        self.infcx.inner.borrow_mut().type_variables().instantiate(vid, generalized_ty);

        // The generalized values we extract from `canonical_var_values` have
        // been fully instantiated and hence the set of scopes we have
        // doesn't matter -- just to be sure, put an empty vector
        // in there.
        let old_a_scopes = std::mem::take(pair.vid_scopes(self));

        // Relate the generalized kind to the original one.
        let result = pair.relate_generalized_ty(self, generalized_ty);

        // Restore the old scopes now.
        *pair.vid_scopes(self) = old_a_scopes;

        debug!("relate_ty_var: complete, result = {:?}", result);
        result
    }

    fn generalize_value<T: Relate<'tcx>>(
        &mut self,
        value: T,
        for_vid: ty::TyVid,
    ) -> RelateResult<'tcx, T> {
        let universe = self.infcx.probe_ty_var(for_vid).unwrap_err();

        let mut generalizer = TypeGeneralizer {
            infcx: self.infcx,
            delegate: &mut self.delegate,
            first_free_index: ty::INNERMOST,
            ambient_variance: self.ambient_variance,
            for_vid_sub_root: self.infcx.inner.borrow_mut().type_variables().sub_root_var(for_vid),
            universe,
        };

        generalizer.relate(value, value)
    }

    fn relate_opaques(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
        let (a, b) = if self.a_is_expected() { (a, b) } else { (b, a) };
        let mut generalize = |ty, ty_is_expected| {
            let var = self.infcx.next_ty_var_id_in_universe(
                TypeVariableOrigin {
                    kind: TypeVariableOriginKind::MiscVariable,
                    span: self.delegate.span(),
                },
                ty::UniverseIndex::ROOT,
            );
            if ty_is_expected {
                self.relate_ty_var((ty, var))
            } else {
                self.relate_ty_var((var, ty))
            }
        };
        let (a, b) = match (a.kind(), b.kind()) {
            (&ty::Alias(ty::Opaque, ..), _) => (a, generalize(b, false)?),
            (_, &ty::Alias(ty::Opaque, ..)) => (generalize(a, true)?, b),
            _ => unreachable!(),
        };
        let cause = ObligationCause::dummy_with_span(self.delegate.span());
        let obligations = self
            .infcx
            .handle_opaque_type(a, b, true, &cause, self.delegate.param_env())?
            .obligations;
        self.delegate.register_obligations(obligations);
        trace!(a = ?a.kind(), b = ?b.kind(), "opaque type instantiated");
        Ok(a)
    }
}

/// When we instantiate an inference variable with a value in
/// `relate_ty_var`, we always have the pair of a `TyVid` and a `Ty`,
/// but the ordering may vary (depending on whether the inference
/// variable was found on the `a` or `b` sides). Therefore, this trait
/// allows us to factor out common code, while preserving the order
/// when needed.
trait VidValuePair<'tcx>: Debug {
    /// Extract the inference variable (which could be either the
    /// first or second part of the tuple).
    fn vid(&self) -> ty::TyVid;

    /// Extract the value it is being related to (which will be the
    /// opposite part of the tuple from the vid).
    fn value_ty(&self) -> Ty<'tcx>;

    /// Extract the scopes that apply to whichever side of the tuple
    /// the vid was found on.  See the comment where this is called
    /// for more details on why we want them.
    fn vid_scopes<'r, D: TypeRelatingDelegate<'tcx>>(
        &self,
        relate: &'r mut TypeRelating<'_, 'tcx, D>,
    ) -> &'r mut Vec<BoundRegionScope<'tcx>>;

    /// Given a generalized type G that should replace the vid, relate
    /// G to the value, putting G on whichever side the vid would have
    /// appeared.
    fn relate_generalized_ty<D>(
        &self,
        relate: &mut TypeRelating<'_, 'tcx, D>,
        generalized_ty: Ty<'tcx>,
    ) -> RelateResult<'tcx, Ty<'tcx>>
    where
        D: TypeRelatingDelegate<'tcx>;
}

impl<'tcx> VidValuePair<'tcx> for (ty::TyVid, Ty<'tcx>) {
    fn vid(&self) -> ty::TyVid {
        self.0
    }

    fn value_ty(&self) -> Ty<'tcx> {
        self.1
    }

    fn vid_scopes<'r, D>(
        &self,
        relate: &'r mut TypeRelating<'_, 'tcx, D>,
    ) -> &'r mut Vec<BoundRegionScope<'tcx>>
    where
        D: TypeRelatingDelegate<'tcx>,
    {
        &mut relate.a_scopes
    }

    fn relate_generalized_ty<D>(
        &self,
        relate: &mut TypeRelating<'_, 'tcx, D>,
        generalized_ty: Ty<'tcx>,
    ) -> RelateResult<'tcx, Ty<'tcx>>
    where
        D: TypeRelatingDelegate<'tcx>,
    {
        relate.relate(generalized_ty, self.value_ty())
    }
}

// In this case, the "vid" is the "b" type.
impl<'tcx> VidValuePair<'tcx> for (Ty<'tcx>, ty::TyVid) {
    fn vid(&self) -> ty::TyVid {
        self.1
    }

    fn value_ty(&self) -> Ty<'tcx> {
        self.0
    }

    fn vid_scopes<'r, D>(
        &self,
        relate: &'r mut TypeRelating<'_, 'tcx, D>,
    ) -> &'r mut Vec<BoundRegionScope<'tcx>>
    where
        D: TypeRelatingDelegate<'tcx>,
    {
        &mut relate.b_scopes
    }

    fn relate_generalized_ty<D>(
        &self,
        relate: &mut TypeRelating<'_, 'tcx, D>,
        generalized_ty: Ty<'tcx>,
    ) -> RelateResult<'tcx, Ty<'tcx>>
    where
        D: TypeRelatingDelegate<'tcx>,
    {
        relate.relate(self.value_ty(), generalized_ty)
    }
}

impl<'tcx, D> TypeRelation<'tcx> for TypeRelating<'_, 'tcx, D>
where
    D: TypeRelatingDelegate<'tcx>,
{
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.infcx.tcx
    }

    fn intercrate(&self) -> bool {
        self.infcx.intercrate
    }

    fn param_env(&self) -> ty::ParamEnv<'tcx> {
        self.delegate.param_env()
    }

    fn tag(&self) -> &'static str {
        "nll::subtype"
    }

    fn a_is_expected(&self) -> bool {
        true
    }

    fn mark_ambiguous(&mut self) {
        let cause = ObligationCause::dummy_with_span(self.delegate.span());
        let param_env = self.delegate.param_env();
        self.delegate.register_obligations(vec![Obligation::new(
            self.tcx(),
            cause,
            param_env,
            ty::Binder::dummy(ty::PredicateKind::Ambiguous),
        )]);
    }

    #[instrument(skip(self, info), level = "trace", ret)]
    fn relate_with_variance<T: Relate<'tcx>>(
        &mut self,
        variance: ty::Variance,
        info: ty::VarianceDiagInfo<'tcx>,
        a: T,
        b: T,
    ) -> RelateResult<'tcx, T> {
        let old_ambient_variance = self.ambient_variance;
        self.ambient_variance = self.ambient_variance.xform(variance);
        self.ambient_variance_info = self.ambient_variance_info.xform(info);

        debug!(?self.ambient_variance);
        // In a bivariant context this always succeeds.
        let r =
            if self.ambient_variance == ty::Variance::Bivariant { a } else { self.relate(a, b)? };

        self.ambient_variance = old_ambient_variance;

        Ok(r)
    }

    #[instrument(skip(self), level = "debug")]
    fn tys(&mut self, a: Ty<'tcx>, mut b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
        let infcx = self.infcx;

        let a = self.infcx.shallow_resolve(a);

        if !D::forbid_inference_vars() {
            b = self.infcx.shallow_resolve(b);
        }

        if a == b {
            // Subtle: if a or b has a bound variable that we are lazily
            // substituting, then even if a == b, it could be that the values we
            // will substitute for those bound variables are *not* the same, and
            // hence returning `Ok(a)` is incorrect.
            if !a.has_escaping_bound_vars() && !b.has_escaping_bound_vars() {
                return Ok(a);
            }
        }

        match (a.kind(), b.kind()) {
            (_, &ty::Infer(ty::TyVar(vid))) => {
                if D::forbid_inference_vars() {
                    // Forbid inference variables in the RHS.
                    bug!("unexpected inference var {:?}", b)
                } else {
                    self.relate_ty_var((a, vid))
                }
            }

            (&ty::Infer(ty::TyVar(vid)), _) => self.relate_ty_var((vid, b)),

            (
                &ty::Alias(ty::Opaque, ty::AliasTy { def_id: a_def_id, .. }),
                &ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, .. }),
            ) if a_def_id == b_def_id => infcx.super_combine_tys(self, a, b).or_else(|err| {
                self.tcx().sess.delay_span_bug(
                    self.delegate.span(),
                    "failure to relate an opaque to itself should result in an error later on",
                );
                if a_def_id.is_local() { self.relate_opaques(a, b) } else { Err(err) }
            }),
            (&ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }), _)
            | (_, &ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }))
                if def_id.is_local() =>
            {
                self.relate_opaques(a, b)
            }

            (&ty::Alias(ty::Projection, projection_ty), _)
                if D::normalization() == NormalizationStrategy::Lazy =>
            {
                Ok(self.relate_projection_ty(projection_ty, b))
            }

            (_, &ty::Alias(ty::Projection, projection_ty))
                if D::normalization() == NormalizationStrategy::Lazy =>
            {
                Ok(self.relate_projection_ty(projection_ty, a))
            }

            _ => {
                debug!(?a, ?b, ?self.ambient_variance);

                // Will also handle unification of `IntVar` and `FloatVar`.
                self.infcx.super_combine_tys(self, a, b)
            }
        }
    }

    #[instrument(skip(self), level = "trace")]
    fn regions(
        &mut self,
        a: ty::Region<'tcx>,
        b: ty::Region<'tcx>,
    ) -> RelateResult<'tcx, ty::Region<'tcx>> {
        debug!(?self.ambient_variance);

        let v_a = self.replace_bound_region(a, ty::INNERMOST, &self.a_scopes);
        let v_b = self.replace_bound_region(b, ty::INNERMOST, &self.b_scopes);

        debug!(?v_a);
        debug!(?v_b);

        if self.ambient_covariance() {
            // Covariance: a <= b. Hence, `b: a`.
            self.push_outlives(v_b, v_a, self.ambient_variance_info);
        }

        if self.ambient_contravariance() {
            // Contravariant: b <= a. Hence, `a: b`.
            self.push_outlives(v_a, v_b, self.ambient_variance_info);
        }

        Ok(a)
    }

    fn consts(
        &mut self,
        a: ty::Const<'tcx>,
        mut b: ty::Const<'tcx>,
    ) -> RelateResult<'tcx, ty::Const<'tcx>> {
        let a = self.infcx.shallow_resolve(a);

        if !D::forbid_inference_vars() {
            b = self.infcx.shallow_resolve(b);
        }

        match b.kind() {
            ty::ConstKind::Infer(InferConst::Var(_)) if D::forbid_inference_vars() => {
                // Forbid inference variables in the RHS.
                self.infcx.tcx.sess.delay_span_bug(
                    self.delegate.span(),
                    format!("unexpected inference var {:?}", b,),
                );
                Ok(a)
            }
            // FIXME(invariance): see the related FIXME above.
            _ => self.infcx.super_combine_consts(self, a, b),
        }
    }

    #[instrument(skip(self), level = "trace")]
    fn binders<T>(
        &mut self,
        a: ty::Binder<'tcx, T>,
        b: ty::Binder<'tcx, T>,
    ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
    where
        T: Relate<'tcx>,
    {
        // We want that
        //
        // ```
        // for<'a> fn(&'a u32) -> &'a u32 <:
        //   fn(&'b u32) -> &'b u32
        // ```
        //
        // but not
        //
        // ```
        // fn(&'a u32) -> &'a u32 <:
        //   for<'b> fn(&'b u32) -> &'b u32
        // ```
        //
        // We therefore proceed as follows:
        //
        // - Instantiate binders on `b` universally, yielding a universe U1.
        // - Instantiate binders on `a` existentially in U1.

        debug!(?self.ambient_variance);

        if let (Some(a), Some(b)) = (a.no_bound_vars(), b.no_bound_vars()) {
            // Fast path for the common case.
            self.relate(a, b)?;
            return Ok(ty::Binder::dummy(a));
        }

        if self.ambient_covariance() {
            // Covariance, so we want `for<..> A <: for<..> B` --
            // therefore we compare any instantiation of A (i.e., A
            // instantiated with existentials) against every
            // instantiation of B (i.e., B instantiated with
            // universals).

            let b_scope = self.create_scope(b, UniversallyQuantified(true));
            let a_scope = self.create_scope(a, UniversallyQuantified(false));

            debug!(?a_scope, "(existential)");
            debug!(?b_scope, "(universal)");

            self.b_scopes.push(b_scope);
            self.a_scopes.push(a_scope);

            // Reset the ambient variance to covariant. This is needed
            // to correctly handle cases like
            //
            //     for<'a> fn(&'a u32, &'a u32) == for<'b, 'c> fn(&'b u32, &'c u32)
            //
            // Somewhat surprisingly, these two types are actually
            // **equal**, even though the one on the right looks more
            // polymorphic. The reason is due to subtyping. To see it,
            // consider that each function can call the other:
            //
            // - The left function can call the right with `'b` and
            //   `'c` both equal to `'a`
            //
            // - The right function can call the left with `'a` set to
            //   `{P}`, where P is the point in the CFG where the call
            //   itself occurs. Note that `'b` and `'c` must both
            //   include P. At the point, the call works because of
            //   subtyping (i.e., `&'b u32 <: &{P} u32`).
            let variance = std::mem::replace(&mut self.ambient_variance, ty::Variance::Covariant);

            self.relate(a.skip_binder(), b.skip_binder())?;

            self.ambient_variance = variance;

            self.b_scopes.pop().unwrap();
            self.a_scopes.pop().unwrap();
        }

        if self.ambient_contravariance() {
            // Contravariance, so we want `for<..> A :> for<..> B`
            // -- therefore we compare every instantiation of A (i.e.,
            // A instantiated with universals) against any
            // instantiation of B (i.e., B instantiated with
            // existentials). Opposite of above.

            let a_scope = self.create_scope(a, UniversallyQuantified(true));
            let b_scope = self.create_scope(b, UniversallyQuantified(false));

            debug!(?a_scope, "(universal)");
            debug!(?b_scope, "(existential)");

            self.a_scopes.push(a_scope);
            self.b_scopes.push(b_scope);

            // Reset ambient variance to contravariance. See the
            // covariant case above for an explanation.
            let variance =
                std::mem::replace(&mut self.ambient_variance, ty::Variance::Contravariant);

            self.relate(a.skip_binder(), b.skip_binder())?;

            self.ambient_variance = variance;

            self.b_scopes.pop().unwrap();
            self.a_scopes.pop().unwrap();
        }

        Ok(a)
    }
}

impl<'tcx, D> ConstEquateRelation<'tcx> for TypeRelating<'_, 'tcx, D>
where
    D: TypeRelatingDelegate<'tcx>,
{
    fn const_equate_obligation(&mut self, _a: ty::Const<'tcx>, _b: ty::Const<'tcx>) {
        // We don't have to worry about the equality of consts during borrow checking
        // as consts always have a static lifetime.
        // FIXME(oli-obk): is this really true? We can at least have HKL and with
        // inline consts we may have further lifetimes that may be unsound to treat as
        // 'static.
    }
}

/// When we encounter a binder like `for<..> fn(..)`, we actually have
/// to walk the `fn` value to find all the values bound by the `for`
/// (these are not explicitly present in the ty representation right
/// now). This visitor handles that: it descends the type, tracking
/// binder depth, and finds late-bound regions targeting the
/// `for<..`>.  For each of those, it creates an entry in
/// `bound_region_scope`.
struct ScopeInstantiator<'me, 'tcx> {
    next_region: &'me mut dyn FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
    // The debruijn index of the scope we are instantiating.
    target_index: ty::DebruijnIndex,
    bound_region_scope: &'me mut BoundRegionScope<'tcx>,
}

impl<'me, 'tcx> TypeVisitor<'tcx> for ScopeInstantiator<'me, 'tcx> {
    fn visit_binder<T: TypeVisitable<'tcx>>(
        &mut self,
        t: &ty::Binder<'tcx, T>,
    ) -> ControlFlow<Self::BreakTy> {
        self.target_index.shift_in(1);
        t.super_visit_with(self);
        self.target_index.shift_out(1);

        ControlFlow::CONTINUE
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
        let ScopeInstantiator { bound_region_scope, next_region, .. } = self;

        match *r {
            ty::ReLateBound(debruijn, br) if debruijn == self.target_index => {
                bound_region_scope.map.entry(br).or_insert_with(|| next_region(br));
            }

            _ => {}
        }

        ControlFlow::CONTINUE
    }
}

/// The "type generalizer" is used when handling inference variables.
///
/// The basic strategy for handling a constraint like `?A <: B` is to
/// apply a "generalization strategy" to the type `B` -- this replaces
/// all the lifetimes in the type `B` with fresh inference
/// variables. (You can read more about the strategy in this [blog
/// post].)
///
/// As an example, if we had `?A <: &'x u32`, we would generalize `&'x
/// u32` to `&'0 u32` where `'0` is a fresh variable. This becomes the
/// value of `A`. Finally, we relate `&'0 u32 <: &'x u32`, which
/// establishes `'0: 'x` as a constraint.
///
/// As a side-effect of this generalization procedure, we also replace
/// all the bound regions that we have traversed with concrete values,
/// so that the resulting generalized type is independent from the
/// scopes.
///
/// [blog post]: https://is.gd/0hKvIr
struct TypeGeneralizer<'me, 'tcx, D>
where
    D: TypeRelatingDelegate<'tcx>,
{
    infcx: &'me InferCtxt<'tcx>,

    delegate: &'me mut D,

    /// After we generalize this type, we are going to relate it to
    /// some other type. What will be the variance at this point?
    ambient_variance: ty::Variance,

    first_free_index: ty::DebruijnIndex,

    /// The vid of the type variable that is in the process of being
    /// instantiated. If we find this within the value we are folding,
    /// that means we would have created a cyclic value.
    for_vid_sub_root: ty::TyVid,

    /// The universe of the type variable that is in the process of being
    /// instantiated. If we find anything that this universe cannot name,
    /// we reject the relation.
    universe: ty::UniverseIndex,
}

impl<'tcx, D> TypeRelation<'tcx> for TypeGeneralizer<'_, 'tcx, D>
where
    D: TypeRelatingDelegate<'tcx>,
{
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.infcx.tcx
    }

    fn intercrate(&self) -> bool {
        assert!(!self.infcx.intercrate);
        false
    }

    fn param_env(&self) -> ty::ParamEnv<'tcx> {
        self.delegate.param_env()
    }

    fn tag(&self) -> &'static str {
        "nll::generalizer"
    }

    fn a_is_expected(&self) -> bool {
        true
    }

    fn mark_ambiguous(&mut self) {
        bug!()
    }

    fn relate_with_variance<T: Relate<'tcx>>(
        &mut self,
        variance: ty::Variance,
        _info: ty::VarianceDiagInfo<'tcx>,
        a: T,
        b: T,
    ) -> RelateResult<'tcx, T> {
        debug!(
            "TypeGeneralizer::relate_with_variance(variance={:?}, a={:?}, b={:?})",
            variance, a, b
        );

        let old_ambient_variance = self.ambient_variance;
        self.ambient_variance = self.ambient_variance.xform(variance);

        debug!(
            "TypeGeneralizer::relate_with_variance: ambient_variance = {:?}",
            self.ambient_variance
        );

        let r = self.relate(a, b)?;

        self.ambient_variance = old_ambient_variance;

        debug!("TypeGeneralizer::relate_with_variance: r={:?}", r);

        Ok(r)
    }

    fn tys(&mut self, a: Ty<'tcx>, _: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
        use crate::infer::type_variable::TypeVariableValue;

        debug!("TypeGeneralizer::tys(a={:?})", a);

        match *a.kind() {
            ty::Infer(ty::TyVar(_)) | ty::Infer(ty::IntVar(_)) | ty::Infer(ty::FloatVar(_))
                if D::forbid_inference_vars() =>
            {
                bug!("unexpected inference variable encountered in NLL generalization: {:?}", a);
            }

            ty::Infer(ty::TyVar(vid)) => {
                let mut inner = self.infcx.inner.borrow_mut();
                let variables = &mut inner.type_variables();
                let vid = variables.root_var(vid);
                let sub_vid = variables.sub_root_var(vid);
                if sub_vid == self.for_vid_sub_root {
                    // If sub-roots are equal, then `for_vid` and
                    // `vid` are related via subtyping.
                    debug!("TypeGeneralizer::tys: occurs check failed");
                    Err(TypeError::Mismatch)
                } else {
                    match variables.probe(vid) {
                        TypeVariableValue::Known { value: u } => {
                            drop(variables);
                            self.relate(u, u)
                        }
                        TypeVariableValue::Unknown { universe: _universe } => {
                            if self.ambient_variance == ty::Bivariant {
                                // FIXME: we may need a WF predicate (related to #54105).
                            }

                            let origin = *variables.var_origin(vid);

                            // Replacing with a new variable in the universe `self.universe`,
                            // it will be unified later with the original type variable in
                            // the universe `_universe`.
                            let new_var_id = variables.new_var(self.universe, origin);

                            let u = self.tcx().mk_ty_var(new_var_id);
                            debug!("generalize: replacing original vid={:?} with new={:?}", vid, u);
                            Ok(u)
                        }
                    }
                }
            }

            ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => {
                // No matter what mode we are in,
                // integer/floating-point types must be equal to be
                // relatable.
                Ok(a)
            }

            ty::Placeholder(placeholder) => {
                if self.universe.cannot_name(placeholder.universe) {
                    debug!(
                        "TypeGeneralizer::tys: root universe {:?} cannot name\
                         placeholder in universe {:?}",
                        self.universe, placeholder.universe
                    );
                    Err(TypeError::Mismatch)
                } else {
                    Ok(a)
                }
            }

            _ => relate::super_relate_tys(self, a, a),
        }
    }

    fn regions(
        &mut self,
        a: ty::Region<'tcx>,
        _: ty::Region<'tcx>,
    ) -> RelateResult<'tcx, ty::Region<'tcx>> {
        debug!("TypeGeneralizer::regions(a={:?})", a);

        if let ty::ReLateBound(debruijn, _) = *a && debruijn < self.first_free_index {
            return Ok(a);
        }

        // For now, we just always create a fresh region variable to
        // replace all the regions in the source type. In the main
        // type checker, we special case the case where the ambient
        // variance is `Invariant` and try to avoid creating a fresh
        // region variable, but since this comes up so much less in
        // NLL (only when users use `_` etc) it is much less
        // important.
        //
        // As an aside, since these new variables are created in
        // `self.universe` universe, this also serves to enforce the
        // universe scoping rules.
        //
        // FIXME(#54105) -- if the ambient variance is bivariant,
        // though, we may however need to check well-formedness or
        // risk a problem like #41677 again.

        let replacement_region_vid = self.delegate.generalize_existential(self.universe);

        Ok(replacement_region_vid)
    }

    fn consts(
        &mut self,
        a: ty::Const<'tcx>,
        _: ty::Const<'tcx>,
    ) -> RelateResult<'tcx, ty::Const<'tcx>> {
        match a.kind() {
            ty::ConstKind::Infer(InferConst::Var(_)) if D::forbid_inference_vars() => {
                bug!("unexpected inference variable encountered in NLL generalization: {:?}", a);
            }
            ty::ConstKind::Infer(InferConst::Var(vid)) => {
                let mut inner = self.infcx.inner.borrow_mut();
                let variable_table = &mut inner.const_unification_table();
                let var_value = variable_table.probe_value(vid);
                match var_value.val.known() {
                    Some(u) => self.relate(u, u),
                    None => {
                        let new_var_id = variable_table.new_key(ConstVarValue {
                            origin: var_value.origin,
                            val: ConstVariableValue::Unknown { universe: self.universe },
                        });
                        Ok(self.tcx().mk_const(new_var_id, a.ty()))
                    }
                }
            }
            ty::ConstKind::Unevaluated(..) if self.tcx().lazy_normalization() => Ok(a),
            _ => relate::super_relate_consts(self, a, a),
        }
    }

    fn binders<T>(
        &mut self,
        a: ty::Binder<'tcx, T>,
        _: ty::Binder<'tcx, T>,
    ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
    where
        T: Relate<'tcx>,
    {
        debug!("TypeGeneralizer::binders(a={:?})", a);

        self.first_free_index.shift_in(1);
        let result = self.relate(a.skip_binder(), a.skip_binder())?;
        self.first_free_index.shift_out(1);
        Ok(a.rebind(result))
    }
}