1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
//! Code related to processing overloaded binary and unary operators.

use super::method::MethodCallee;
use super::{has_expected_num_generic_args, FnCtxt};
use crate::Expectation;
use rustc_ast as ast;
use rustc_errors::{self, struct_span_err, Applicability, Diagnostic};
use rustc_hir as hir;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_infer::traits::ObligationCauseCode;
use rustc_middle::ty::adjustment::{
    Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability,
};
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::{self, DefIdTree, Ty, TyCtxt, TypeFolder, TypeSuperFoldable, TypeVisitable};
use rustc_session::errors::ExprParenthesesNeeded;
use rustc_span::source_map::Spanned;
use rustc_span::symbol::{sym, Ident};
use rustc_span::Span;
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::traits::error_reporting::suggestions::TypeErrCtxtExt as _;
use rustc_trait_selection::traits::FulfillmentError;
use rustc_type_ir::sty::TyKind::*;

impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
    /// Checks a `a <op>= b`
    pub fn check_binop_assign(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
        op: hir::BinOp,
        lhs: &'tcx hir::Expr<'tcx>,
        rhs: &'tcx hir::Expr<'tcx>,
        expected: Expectation<'tcx>,
    ) -> Ty<'tcx> {
        let (lhs_ty, rhs_ty, return_ty) =
            self.check_overloaded_binop(expr, lhs, rhs, op, IsAssign::Yes, expected);

        let ty =
            if !lhs_ty.is_ty_var() && !rhs_ty.is_ty_var() && is_builtin_binop(lhs_ty, rhs_ty, op) {
                self.enforce_builtin_binop_types(lhs.span, lhs_ty, rhs.span, rhs_ty, op);
                self.tcx.mk_unit()
            } else {
                return_ty
            };

        self.check_lhs_assignable(lhs, "E0067", op.span, |err| {
            if let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty) {
                if self
                    .lookup_op_method(
                        lhs_deref_ty,
                        Some(rhs_ty),
                        Some(rhs),
                        Op::Binary(op, IsAssign::Yes),
                        expected,
                    )
                    .is_ok()
                {
                    // If LHS += RHS is an error, but *LHS += RHS is successful, then we will have
                    // emitted a better suggestion during error handling in check_overloaded_binop.
                    if self
                        .lookup_op_method(
                            lhs_ty,
                            Some(rhs_ty),
                            Some(rhs),
                            Op::Binary(op, IsAssign::Yes),
                            expected,
                        )
                        .is_err()
                    {
                        err.downgrade_to_delayed_bug();
                    } else {
                        // Otherwise, it's valid to suggest dereferencing the LHS here.
                        err.span_suggestion_verbose(
                            lhs.span.shrink_to_lo(),
                            "consider dereferencing the left-hand side of this operation",
                            "*",
                            Applicability::MaybeIncorrect,
                        );
                    }
                }
            }
        });

        ty
    }

    /// Checks a potentially overloaded binary operator.
    pub fn check_binop(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
        op: hir::BinOp,
        lhs_expr: &'tcx hir::Expr<'tcx>,
        rhs_expr: &'tcx hir::Expr<'tcx>,
        expected: Expectation<'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;

        debug!(
            "check_binop(expr.hir_id={}, expr={:?}, op={:?}, lhs_expr={:?}, rhs_expr={:?})",
            expr.hir_id, expr, op, lhs_expr, rhs_expr
        );

        match BinOpCategory::from(op) {
            BinOpCategory::Shortcircuit => {
                // && and || are a simple case.
                self.check_expr_coercable_to_type(lhs_expr, tcx.types.bool, None);
                let lhs_diverges = self.diverges.get();
                self.check_expr_coercable_to_type(rhs_expr, tcx.types.bool, None);

                // Depending on the LHS' value, the RHS can never execute.
                self.diverges.set(lhs_diverges);

                tcx.types.bool
            }
            _ => {
                // Otherwise, we always treat operators as if they are
                // overloaded. This is the way to be most flexible w/r/t
                // types that get inferred.
                let (lhs_ty, rhs_ty, return_ty) = self.check_overloaded_binop(
                    expr,
                    lhs_expr,
                    rhs_expr,
                    op,
                    IsAssign::No,
                    expected,
                );

                // Supply type inference hints if relevant. Probably these
                // hints should be enforced during select as part of the
                // `consider_unification_despite_ambiguity` routine, but this
                // more convenient for now.
                //
                // The basic idea is to help type inference by taking
                // advantage of things we know about how the impls for
                // scalar types are arranged. This is important in a
                // scenario like `1_u32 << 2`, because it lets us quickly
                // deduce that the result type should be `u32`, even
                // though we don't know yet what type 2 has and hence
                // can't pin this down to a specific impl.
                if !lhs_ty.is_ty_var()
                    && !rhs_ty.is_ty_var()
                    && is_builtin_binop(lhs_ty, rhs_ty, op)
                {
                    let builtin_return_ty = self.enforce_builtin_binop_types(
                        lhs_expr.span,
                        lhs_ty,
                        rhs_expr.span,
                        rhs_ty,
                        op,
                    );
                    self.demand_suptype(expr.span, builtin_return_ty, return_ty);
                }

                return_ty
            }
        }
    }

    fn enforce_builtin_binop_types(
        &self,
        lhs_span: Span,
        lhs_ty: Ty<'tcx>,
        rhs_span: Span,
        rhs_ty: Ty<'tcx>,
        op: hir::BinOp,
    ) -> Ty<'tcx> {
        debug_assert!(is_builtin_binop(lhs_ty, rhs_ty, op));

        // Special-case a single layer of referencing, so that things like `5.0 + &6.0f32` work.
        // (See https://github.com/rust-lang/rust/issues/57447.)
        let (lhs_ty, rhs_ty) = (deref_ty_if_possible(lhs_ty), deref_ty_if_possible(rhs_ty));

        let tcx = self.tcx;
        match BinOpCategory::from(op) {
            BinOpCategory::Shortcircuit => {
                self.demand_suptype(lhs_span, tcx.types.bool, lhs_ty);
                self.demand_suptype(rhs_span, tcx.types.bool, rhs_ty);
                tcx.types.bool
            }

            BinOpCategory::Shift => {
                // result type is same as LHS always
                lhs_ty
            }

            BinOpCategory::Math | BinOpCategory::Bitwise => {
                // both LHS and RHS and result will have the same type
                self.demand_suptype(rhs_span, lhs_ty, rhs_ty);
                lhs_ty
            }

            BinOpCategory::Comparison => {
                // both LHS and RHS and result will have the same type
                self.demand_suptype(rhs_span, lhs_ty, rhs_ty);
                tcx.types.bool
            }
        }
    }

    fn check_overloaded_binop(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
        lhs_expr: &'tcx hir::Expr<'tcx>,
        rhs_expr: &'tcx hir::Expr<'tcx>,
        op: hir::BinOp,
        is_assign: IsAssign,
        expected: Expectation<'tcx>,
    ) -> (Ty<'tcx>, Ty<'tcx>, Ty<'tcx>) {
        debug!(
            "check_overloaded_binop(expr.hir_id={}, op={:?}, is_assign={:?})",
            expr.hir_id, op, is_assign
        );

        let lhs_ty = match is_assign {
            IsAssign::No => {
                // Find a suitable supertype of the LHS expression's type, by coercing to
                // a type variable, to pass as the `Self` to the trait, avoiding invariant
                // trait matching creating lifetime constraints that are too strict.
                // e.g., adding `&'a T` and `&'b T`, given `&'x T: Add<&'x T>`, will result
                // in `&'a T <: &'x T` and `&'b T <: &'x T`, instead of `'a = 'b = 'x`.
                let lhs_ty = self.check_expr(lhs_expr);
                let fresh_var = self.next_ty_var(TypeVariableOrigin {
                    kind: TypeVariableOriginKind::MiscVariable,
                    span: lhs_expr.span,
                });
                self.demand_coerce(lhs_expr, lhs_ty, fresh_var, Some(rhs_expr), AllowTwoPhase::No)
            }
            IsAssign::Yes => {
                // rust-lang/rust#52126: We have to use strict
                // equivalence on the LHS of an assign-op like `+=`;
                // overwritten or mutably-borrowed places cannot be
                // coerced to a supertype.
                self.check_expr(lhs_expr)
            }
        };
        let lhs_ty = self.resolve_vars_with_obligations(lhs_ty);

        // N.B., as we have not yet type-checked the RHS, we don't have the
        // type at hand. Make a variable to represent it. The whole reason
        // for this indirection is so that, below, we can check the expr
        // using this variable as the expected type, which sometimes lets
        // us do better coercions than we would be able to do otherwise,
        // particularly for things like `String + &String`.
        let rhs_ty_var = self.next_ty_var(TypeVariableOrigin {
            kind: TypeVariableOriginKind::MiscVariable,
            span: rhs_expr.span,
        });

        let result = self.lookup_op_method(
            lhs_ty,
            Some(rhs_ty_var),
            Some(rhs_expr),
            Op::Binary(op, is_assign),
            expected,
        );

        // see `NB` above
        let rhs_ty = self.check_expr_coercable_to_type(rhs_expr, rhs_ty_var, Some(lhs_expr));
        let rhs_ty = self.resolve_vars_with_obligations(rhs_ty);

        let return_ty = match result {
            Ok(method) => {
                let by_ref_binop = !op.node.is_by_value();
                if is_assign == IsAssign::Yes || by_ref_binop {
                    if let ty::Ref(region, _, mutbl) = method.sig.inputs()[0].kind() {
                        let mutbl = AutoBorrowMutability::new(*mutbl, AllowTwoPhase::Yes);
                        let autoref = Adjustment {
                            kind: Adjust::Borrow(AutoBorrow::Ref(*region, mutbl)),
                            target: method.sig.inputs()[0],
                        };
                        self.apply_adjustments(lhs_expr, vec![autoref]);
                    }
                }
                if by_ref_binop {
                    if let ty::Ref(region, _, mutbl) = method.sig.inputs()[1].kind() {
                        // Allow two-phase borrows for binops in initial deployment
                        // since they desugar to methods
                        let mutbl = AutoBorrowMutability::new(*mutbl, AllowTwoPhase::Yes);

                        let autoref = Adjustment {
                            kind: Adjust::Borrow(AutoBorrow::Ref(*region, mutbl)),
                            target: method.sig.inputs()[1],
                        };
                        // HACK(eddyb) Bypass checks due to reborrows being in
                        // some cases applied on the RHS, on top of which we need
                        // to autoref, which is not allowed by apply_adjustments.
                        // self.apply_adjustments(rhs_expr, vec![autoref]);
                        self.typeck_results
                            .borrow_mut()
                            .adjustments_mut()
                            .entry(rhs_expr.hir_id)
                            .or_default()
                            .push(autoref);
                    }
                }
                self.write_method_call(expr.hir_id, method);

                method.sig.output()
            }
            // error types are considered "builtin"
            Err(_) if lhs_ty.references_error() || rhs_ty.references_error() => self.tcx.ty_error(),
            Err(errors) => {
                let (_, trait_def_id) =
                    lang_item_for_op(self.tcx, Op::Binary(op, is_assign), op.span);
                let missing_trait = trait_def_id
                    .map(|def_id| with_no_trimmed_paths!(self.tcx.def_path_str(def_id)));
                let (mut err, output_def_id) = match is_assign {
                    IsAssign::Yes => {
                        let mut err = struct_span_err!(
                            self.tcx.sess,
                            expr.span,
                            E0368,
                            "binary assignment operation `{}=` cannot be applied to type `{}`",
                            op.node.as_str(),
                            lhs_ty,
                        );
                        err.span_label(
                            lhs_expr.span,
                            format!("cannot use `{}=` on type `{}`", op.node.as_str(), lhs_ty),
                        );
                        self.note_unmet_impls_on_type(&mut err, errors);
                        (err, None)
                    }
                    IsAssign::No => {
                        let message = match op.node {
                            hir::BinOpKind::Add => {
                                format!("cannot add `{rhs_ty}` to `{lhs_ty}`")
                            }
                            hir::BinOpKind::Sub => {
                                format!("cannot subtract `{rhs_ty}` from `{lhs_ty}`")
                            }
                            hir::BinOpKind::Mul => {
                                format!("cannot multiply `{lhs_ty}` by `{rhs_ty}`")
                            }
                            hir::BinOpKind::Div => {
                                format!("cannot divide `{lhs_ty}` by `{rhs_ty}`")
                            }
                            hir::BinOpKind::Rem => {
                                format!("cannot mod `{lhs_ty}` by `{rhs_ty}`")
                            }
                            hir::BinOpKind::BitAnd => {
                                format!("no implementation for `{lhs_ty} & {rhs_ty}`")
                            }
                            hir::BinOpKind::BitXor => {
                                format!("no implementation for `{lhs_ty} ^ {rhs_ty}`")
                            }
                            hir::BinOpKind::BitOr => {
                                format!("no implementation for `{lhs_ty} | {rhs_ty}`")
                            }
                            hir::BinOpKind::Shl => {
                                format!("no implementation for `{lhs_ty} << {rhs_ty}`")
                            }
                            hir::BinOpKind::Shr => {
                                format!("no implementation for `{lhs_ty} >> {rhs_ty}`")
                            }
                            _ => format!(
                                "binary operation `{}` cannot be applied to type `{}`",
                                op.node.as_str(),
                                lhs_ty
                            ),
                        };
                        let output_def_id = trait_def_id.and_then(|def_id| {
                            self.tcx
                                .associated_item_def_ids(def_id)
                                .iter()
                                .find(|item_def_id| {
                                    self.tcx.associated_item(*item_def_id).name == sym::Output
                                })
                                .cloned()
                        });
                        let mut err = struct_span_err!(self.tcx.sess, op.span, E0369, "{message}");
                        if !lhs_expr.span.eq(&rhs_expr.span) {
                            err.span_label(lhs_expr.span, lhs_ty.to_string());
                            err.span_label(rhs_expr.span, rhs_ty.to_string());
                        }
                        self.note_unmet_impls_on_type(&mut err, errors);
                        (err, output_def_id)
                    }
                };

                let mut suggest_deref_binop = |lhs_deref_ty: Ty<'tcx>| {
                    if self
                        .lookup_op_method(
                            lhs_deref_ty,
                            Some(rhs_ty),
                            Some(rhs_expr),
                            Op::Binary(op, is_assign),
                            expected,
                        )
                        .is_ok()
                    {
                        let msg = &format!(
                            "`{}{}` can be used on `{}` if you dereference the left-hand side",
                            op.node.as_str(),
                            match is_assign {
                                IsAssign::Yes => "=",
                                IsAssign::No => "",
                            },
                            lhs_deref_ty,
                        );
                        err.span_suggestion_verbose(
                            lhs_expr.span.shrink_to_lo(),
                            msg,
                            "*",
                            rustc_errors::Applicability::MachineApplicable,
                        );
                    }
                };

                let is_compatible = |lhs_ty, rhs_ty| {
                    self.lookup_op_method(
                        lhs_ty,
                        Some(rhs_ty),
                        Some(rhs_expr),
                        Op::Binary(op, is_assign),
                        expected,
                    )
                    .is_ok()
                };

                // We should suggest `a + b` => `*a + b` if `a` is copy, and suggest
                // `a += b` => `*a += b` if a is a mut ref.
                if !op.span.can_be_used_for_suggestions() {
                    // Suppress suggestions when lhs and rhs are not in the same span as the error
                } else if is_assign == IsAssign::Yes
                    && let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty)
                {
                    suggest_deref_binop(lhs_deref_ty);
                } else if is_assign == IsAssign::No
                    && let Ref(_, lhs_deref_ty, _) = lhs_ty.kind()
                {
                    if self.type_is_copy_modulo_regions(
                        self.param_env,
                        *lhs_deref_ty,
                        lhs_expr.span,
                    ) {
                        suggest_deref_binop(*lhs_deref_ty);
                    }
                } else if self.suggest_fn_call(&mut err, lhs_expr, lhs_ty, |lhs_ty| {
                    is_compatible(lhs_ty, rhs_ty)
                }) || self.suggest_fn_call(&mut err, rhs_expr, rhs_ty, |rhs_ty| {
                    is_compatible(lhs_ty, rhs_ty)
                }) || self.suggest_two_fn_call(
                    &mut err,
                    rhs_expr,
                    rhs_ty,
                    lhs_expr,
                    lhs_ty,
                    |lhs_ty, rhs_ty| is_compatible(lhs_ty, rhs_ty),
                ) {
                    // Cool
                }

                if let Some(missing_trait) = missing_trait {
                    if op.node == hir::BinOpKind::Add
                        && self.check_str_addition(
                            lhs_expr, rhs_expr, lhs_ty, rhs_ty, &mut err, is_assign, op,
                        )
                    {
                        // This has nothing here because it means we did string
                        // concatenation (e.g., "Hello " + "World!"). This means
                        // we don't want the note in the else clause to be emitted
                    } else if lhs_ty.has_non_region_param() {
                        // Look for a TraitPredicate in the Fulfillment errors,
                        // and use it to generate a suggestion.
                        //
                        // Note that lookup_op_method must be called again but
                        // with a specific rhs_ty instead of a placeholder so
                        // the resulting predicate generates a more specific
                        // suggestion for the user.
                        let errors = self
                            .lookup_op_method(
                                lhs_ty,
                                Some(rhs_ty),
                                Some(rhs_expr),
                                Op::Binary(op, is_assign),
                                expected,
                            )
                            .unwrap_err();
                        if !errors.is_empty() {
                            for error in errors {
                                if let Some(trait_pred) =
                                    error.obligation.predicate.to_opt_poly_trait_pred()
                                {
                                    let output_associated_item = match error.obligation.cause.code()
                                    {
                                        ObligationCauseCode::BinOp {
                                            output_ty: Some(output_ty),
                                            ..
                                        } => {
                                            // Make sure that we're attaching `Output = ..` to the right trait predicate
                                            if let Some(output_def_id) = output_def_id
                                                && let Some(trait_def_id) = trait_def_id
                                                && self.tcx.parent(output_def_id) == trait_def_id
                                            {
                                                Some(("Output", *output_ty))
                                            } else {
                                                None
                                            }
                                        }
                                        _ => None,
                                    };

                                    self.err_ctxt().suggest_restricting_param_bound(
                                        &mut err,
                                        trait_pred,
                                        output_associated_item,
                                        self.body_id,
                                    );
                                }
                            }
                        } else {
                            // When we know that a missing bound is responsible, we don't show
                            // this note as it is redundant.
                            err.note(&format!(
                                "the trait `{missing_trait}` is not implemented for `{lhs_ty}`"
                            ));
                        }
                    }
                }
                let reported = err.emit();
                self.tcx.ty_error_with_guaranteed(reported)
            }
        };

        (lhs_ty, rhs_ty, return_ty)
    }

    /// Provide actionable suggestions when trying to add two strings with incorrect types,
    /// like `&str + &str`, `String + String` and `&str + &String`.
    ///
    /// If this function returns `true` it means a note was printed, so we don't need
    /// to print the normal "implementation of `std::ops::Add` might be missing" note
    fn check_str_addition(
        &self,
        lhs_expr: &'tcx hir::Expr<'tcx>,
        rhs_expr: &'tcx hir::Expr<'tcx>,
        lhs_ty: Ty<'tcx>,
        rhs_ty: Ty<'tcx>,
        err: &mut Diagnostic,
        is_assign: IsAssign,
        op: hir::BinOp,
    ) -> bool {
        let str_concat_note = "string concatenation requires an owned `String` on the left";
        let rm_borrow_msg = "remove the borrow to obtain an owned `String`";
        let to_owned_msg = "create an owned `String` from a string reference";

        let string_type = self.tcx.lang_items().string();
        let is_std_string = |ty: Ty<'tcx>| {
            ty.ty_adt_def().map_or(false, |ty_def| Some(ty_def.did()) == string_type)
        };

        match (lhs_ty.kind(), rhs_ty.kind()) {
            (&Ref(_, l_ty, _), &Ref(_, r_ty, _)) // &str or &String + &str, &String or &&str
                if (*l_ty.kind() == Str || is_std_string(l_ty))
                    && (*r_ty.kind() == Str
                        || is_std_string(r_ty)
                        || matches!(
                            r_ty.kind(), Ref(_, inner_ty, _) if *inner_ty.kind() == Str
                        )) =>
            {
                if let IsAssign::No = is_assign { // Do not supply this message if `&str += &str`
                    err.span_label(op.span, "`+` cannot be used to concatenate two `&str` strings");
                    err.note(str_concat_note);
                    if let hir::ExprKind::AddrOf(_, _, lhs_inner_expr) = lhs_expr.kind {
                        err.span_suggestion_verbose(
                            lhs_expr.span.until(lhs_inner_expr.span),
                            rm_borrow_msg,
                            "",
                            Applicability::MachineApplicable
                        );
                    } else {
                        err.span_suggestion_verbose(
                            lhs_expr.span.shrink_to_hi(),
                            to_owned_msg,
                            ".to_owned()",
                            Applicability::MachineApplicable
                        );
                    }
                }
                true
            }
            (&Ref(_, l_ty, _), &Adt(..)) // Handle `&str` & `&String` + `String`
                if (*l_ty.kind() == Str || is_std_string(l_ty)) && is_std_string(rhs_ty) =>
            {
                err.span_label(
                    op.span,
                    "`+` cannot be used to concatenate a `&str` with a `String`",
                );
                match is_assign {
                    IsAssign::No => {
                        let sugg_msg;
                        let lhs_sugg = if let hir::ExprKind::AddrOf(_, _, lhs_inner_expr) = lhs_expr.kind {
                            sugg_msg = "remove the borrow on the left and add one on the right";
                            (lhs_expr.span.until(lhs_inner_expr.span), "".to_owned())
                        } else {
                            sugg_msg = "create an owned `String` on the left and add a borrow on the right";
                            (lhs_expr.span.shrink_to_hi(), ".to_owned()".to_owned())
                        };
                        let suggestions = vec![
                            lhs_sugg,
                            (rhs_expr.span.shrink_to_lo(), "&".to_owned()),
                        ];
                        err.multipart_suggestion_verbose(
                            sugg_msg,
                            suggestions,
                            Applicability::MachineApplicable,
                        );
                    }
                    IsAssign::Yes => {
                        err.note(str_concat_note);
                    }
                }
                true
            }
            _ => false,
        }
    }

    pub fn check_user_unop(
        &self,
        ex: &'tcx hir::Expr<'tcx>,
        operand_ty: Ty<'tcx>,
        op: hir::UnOp,
        expected: Expectation<'tcx>,
    ) -> Ty<'tcx> {
        assert!(op.is_by_value());
        match self.lookup_op_method(operand_ty, None, None, Op::Unary(op, ex.span), expected) {
            Ok(method) => {
                self.write_method_call(ex.hir_id, method);
                method.sig.output()
            }
            Err(errors) => {
                let actual = self.resolve_vars_if_possible(operand_ty);
                if !actual.references_error() {
                    let mut err = struct_span_err!(
                        self.tcx.sess,
                        ex.span,
                        E0600,
                        "cannot apply unary operator `{}` to type `{}`",
                        op.as_str(),
                        actual
                    );
                    err.span_label(
                        ex.span,
                        format!("cannot apply unary operator `{}`", op.as_str()),
                    );

                    if operand_ty.has_non_region_param() {
                        let predicates = errors.iter().filter_map(|error| {
                            error.obligation.predicate.to_opt_poly_trait_pred()
                        });
                        for pred in predicates {
                            self.err_ctxt().suggest_restricting_param_bound(
                                &mut err,
                                pred,
                                None,
                                self.body_id,
                            );
                        }
                    }

                    let sp = self.tcx.sess.source_map().start_point(ex.span);
                    if let Some(sp) =
                        self.tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp)
                    {
                        // If the previous expression was a block expression, suggest parentheses
                        // (turning this into a binary subtraction operation instead.)
                        // for example, `{2} - 2` -> `({2}) - 2` (see src\test\ui\parser\expr-as-stmt.rs)
                        err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
                    } else {
                        match actual.kind() {
                            Uint(_) if op == hir::UnOp::Neg => {
                                err.note("unsigned values cannot be negated");

                                if let hir::ExprKind::Unary(
                                    _,
                                    hir::Expr {
                                        kind:
                                            hir::ExprKind::Lit(Spanned {
                                                node: ast::LitKind::Int(1, _),
                                                ..
                                            }),
                                        ..
                                    },
                                ) = ex.kind
                                {
                                    err.span_suggestion(
                                        ex.span,
                                        &format!(
                                            "you may have meant the maximum value of `{actual}`",
                                        ),
                                        format!("{actual}::MAX"),
                                        Applicability::MaybeIncorrect,
                                    );
                                }
                            }
                            Str | Never | Char | Tuple(_) | Array(_, _) => {}
                            Ref(_, lty, _) if *lty.kind() == Str => {}
                            _ => {
                                self.note_unmet_impls_on_type(&mut err, errors);
                            }
                        }
                    }
                    err.emit();
                }
                self.tcx.ty_error()
            }
        }
    }

    fn lookup_op_method(
        &self,
        lhs_ty: Ty<'tcx>,
        other_ty: Option<Ty<'tcx>>,
        other_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
        op: Op,
        expected: Expectation<'tcx>,
    ) -> Result<MethodCallee<'tcx>, Vec<FulfillmentError<'tcx>>> {
        let span = match op {
            Op::Binary(op, _) => op.span,
            Op::Unary(_, span) => span,
        };
        let (opname, trait_did) = lang_item_for_op(self.tcx, op, span);

        debug!(
            "lookup_op_method(lhs_ty={:?}, op={:?}, opname={:?}, trait_did={:?})",
            lhs_ty, op, opname, trait_did
        );

        // Catches cases like #83893, where a lang item is declared with the
        // wrong number of generic arguments. Should have yielded an error
        // elsewhere by now, but we have to catch it here so that we do not
        // index `other_tys` out of bounds (if the lang item has too many
        // generic arguments, `other_tys` is too short).
        if !has_expected_num_generic_args(
            self.tcx,
            trait_did,
            match op {
                // Binary ops have a generic right-hand side, unary ops don't
                Op::Binary(..) => 1,
                Op::Unary(..) => 0,
            },
        ) {
            return Err(vec![]);
        }

        let opname = Ident::with_dummy_span(opname);
        let method = trait_did.and_then(|trait_did| {
            self.lookup_op_method_in_trait(
                span,
                opname,
                trait_did,
                lhs_ty,
                other_ty,
                other_ty_expr,
                expected,
            )
        });

        match (method, trait_did) {
            (Some(ok), _) => {
                let method = self.register_infer_ok_obligations(ok);
                self.select_obligations_where_possible(|_| {});
                Ok(method)
            }
            (None, None) => Err(vec![]),
            (None, Some(trait_did)) => {
                let (obligation, _) = self.obligation_for_op_method(
                    span,
                    trait_did,
                    lhs_ty,
                    other_ty,
                    other_ty_expr,
                    expected,
                );
                Err(rustc_trait_selection::traits::fully_solve_obligation(self, obligation))
            }
        }
    }
}

fn lang_item_for_op(
    tcx: TyCtxt<'_>,
    op: Op,
    span: Span,
) -> (rustc_span::Symbol, Option<hir::def_id::DefId>) {
    let lang = tcx.lang_items();
    if let Op::Binary(op, IsAssign::Yes) = op {
        match op.node {
            hir::BinOpKind::Add => (sym::add_assign, lang.add_assign_trait()),
            hir::BinOpKind::Sub => (sym::sub_assign, lang.sub_assign_trait()),
            hir::BinOpKind::Mul => (sym::mul_assign, lang.mul_assign_trait()),
            hir::BinOpKind::Div => (sym::div_assign, lang.div_assign_trait()),
            hir::BinOpKind::Rem => (sym::rem_assign, lang.rem_assign_trait()),
            hir::BinOpKind::BitXor => (sym::bitxor_assign, lang.bitxor_assign_trait()),
            hir::BinOpKind::BitAnd => (sym::bitand_assign, lang.bitand_assign_trait()),
            hir::BinOpKind::BitOr => (sym::bitor_assign, lang.bitor_assign_trait()),
            hir::BinOpKind::Shl => (sym::shl_assign, lang.shl_assign_trait()),
            hir::BinOpKind::Shr => (sym::shr_assign, lang.shr_assign_trait()),
            hir::BinOpKind::Lt
            | hir::BinOpKind::Le
            | hir::BinOpKind::Ge
            | hir::BinOpKind::Gt
            | hir::BinOpKind::Eq
            | hir::BinOpKind::Ne
            | hir::BinOpKind::And
            | hir::BinOpKind::Or => {
                span_bug!(span, "impossible assignment operation: {}=", op.node.as_str())
            }
        }
    } else if let Op::Binary(op, IsAssign::No) = op {
        match op.node {
            hir::BinOpKind::Add => (sym::add, lang.add_trait()),
            hir::BinOpKind::Sub => (sym::sub, lang.sub_trait()),
            hir::BinOpKind::Mul => (sym::mul, lang.mul_trait()),
            hir::BinOpKind::Div => (sym::div, lang.div_trait()),
            hir::BinOpKind::Rem => (sym::rem, lang.rem_trait()),
            hir::BinOpKind::BitXor => (sym::bitxor, lang.bitxor_trait()),
            hir::BinOpKind::BitAnd => (sym::bitand, lang.bitand_trait()),
            hir::BinOpKind::BitOr => (sym::bitor, lang.bitor_trait()),
            hir::BinOpKind::Shl => (sym::shl, lang.shl_trait()),
            hir::BinOpKind::Shr => (sym::shr, lang.shr_trait()),
            hir::BinOpKind::Lt => (sym::lt, lang.partial_ord_trait()),
            hir::BinOpKind::Le => (sym::le, lang.partial_ord_trait()),
            hir::BinOpKind::Ge => (sym::ge, lang.partial_ord_trait()),
            hir::BinOpKind::Gt => (sym::gt, lang.partial_ord_trait()),
            hir::BinOpKind::Eq => (sym::eq, lang.eq_trait()),
            hir::BinOpKind::Ne => (sym::ne, lang.eq_trait()),
            hir::BinOpKind::And | hir::BinOpKind::Or => {
                span_bug!(span, "&& and || are not overloadable")
            }
        }
    } else if let Op::Unary(hir::UnOp::Not, _) = op {
        (sym::not, lang.not_trait())
    } else if let Op::Unary(hir::UnOp::Neg, _) = op {
        (sym::neg, lang.neg_trait())
    } else {
        bug!("lookup_op_method: op not supported: {:?}", op)
    }
}

// Binary operator categories. These categories summarize the behavior
// with respect to the builtin operations supported.
enum BinOpCategory {
    /// &&, || -- cannot be overridden
    Shortcircuit,

    /// <<, >> -- when shifting a single integer, rhs can be any
    /// integer type. For simd, types must match.
    Shift,

    /// +, -, etc -- takes equal types, produces same type as input,
    /// applicable to ints/floats/simd
    Math,

    /// &, |, ^ -- takes equal types, produces same type as input,
    /// applicable to ints/floats/simd/bool
    Bitwise,

    /// ==, !=, etc -- takes equal types, produces bools, except for simd,
    /// which produce the input type
    Comparison,
}

impl BinOpCategory {
    fn from(op: hir::BinOp) -> BinOpCategory {
        match op.node {
            hir::BinOpKind::Shl | hir::BinOpKind::Shr => BinOpCategory::Shift,

            hir::BinOpKind::Add
            | hir::BinOpKind::Sub
            | hir::BinOpKind::Mul
            | hir::BinOpKind::Div
            | hir::BinOpKind::Rem => BinOpCategory::Math,

            hir::BinOpKind::BitXor | hir::BinOpKind::BitAnd | hir::BinOpKind::BitOr => {
                BinOpCategory::Bitwise
            }

            hir::BinOpKind::Eq
            | hir::BinOpKind::Ne
            | hir::BinOpKind::Lt
            | hir::BinOpKind::Le
            | hir::BinOpKind::Ge
            | hir::BinOpKind::Gt => BinOpCategory::Comparison,

            hir::BinOpKind::And | hir::BinOpKind::Or => BinOpCategory::Shortcircuit,
        }
    }
}

/// Whether the binary operation is an assignment (`a += b`), or not (`a + b`)
#[derive(Clone, Copy, Debug, PartialEq)]
enum IsAssign {
    No,
    Yes,
}

#[derive(Clone, Copy, Debug)]
enum Op {
    Binary(hir::BinOp, IsAssign),
    Unary(hir::UnOp, Span),
}

/// Dereferences a single level of immutable referencing.
fn deref_ty_if_possible<'tcx>(ty: Ty<'tcx>) -> Ty<'tcx> {
    match ty.kind() {
        ty::Ref(_, ty, hir::Mutability::Not) => *ty,
        _ => ty,
    }
}

/// Returns `true` if this is a built-in arithmetic operation (e.g., u32
/// + u32, i16x4 == i16x4) and false if these types would have to be
/// overloaded to be legal. There are two reasons that we distinguish
/// builtin operations from overloaded ones (vs trying to drive
/// everything uniformly through the trait system and intrinsics or
/// something like that):
///
/// 1. Builtin operations can trivially be evaluated in constants.
/// 2. For comparison operators applied to SIMD types the result is
///    not of type `bool`. For example, `i16x4 == i16x4` yields a
///    type like `i16x4`. This means that the overloaded trait
///    `PartialEq` is not applicable.
///
/// Reason #2 is the killer. I tried for a while to always use
/// overloaded logic and just check the types in constants/codegen after
/// the fact, and it worked fine, except for SIMD types. -nmatsakis
fn is_builtin_binop<'tcx>(lhs: Ty<'tcx>, rhs: Ty<'tcx>, op: hir::BinOp) -> bool {
    // Special-case a single layer of referencing, so that things like `5.0 + &6.0f32` work.
    // (See https://github.com/rust-lang/rust/issues/57447.)
    let (lhs, rhs) = (deref_ty_if_possible(lhs), deref_ty_if_possible(rhs));

    match BinOpCategory::from(op) {
        BinOpCategory::Shortcircuit => true,

        BinOpCategory::Shift => {
            lhs.references_error()
                || rhs.references_error()
                || lhs.is_integral() && rhs.is_integral()
        }

        BinOpCategory::Math => {
            lhs.references_error()
                || rhs.references_error()
                || lhs.is_integral() && rhs.is_integral()
                || lhs.is_floating_point() && rhs.is_floating_point()
        }

        BinOpCategory::Bitwise => {
            lhs.references_error()
                || rhs.references_error()
                || lhs.is_integral() && rhs.is_integral()
                || lhs.is_floating_point() && rhs.is_floating_point()
                || lhs.is_bool() && rhs.is_bool()
        }

        BinOpCategory::Comparison => {
            lhs.references_error() || rhs.references_error() || lhs.is_scalar() && rhs.is_scalar()
        }
    }
}

struct TypeParamEraser<'a, 'tcx>(&'a FnCtxt<'a, 'tcx>, Span);

impl<'tcx> TypeFolder<'tcx> for TypeParamEraser<'_, 'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.0.tcx
    }

    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
        match ty.kind() {
            ty::Param(_) => self.0.next_ty_var(TypeVariableOrigin {
                kind: TypeVariableOriginKind::MiscVariable,
                span: self.1,
            }),
            _ => ty.super_fold_with(self),
        }
    }
}