1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
#[cfg(feature = "stack-cache")]
use std::ops::Range;

use rustc_data_structures::fx::FxHashSet;

use crate::borrow_tracker::{
    stacked_borrows::{Item, Permission},
    AccessKind, BorTag,
};
use crate::ProvenanceExtra;

/// Exactly what cache size we should use is a difficult tradeoff. There will always be some
/// workload which has a `BorTag` working set which exceeds the size of the cache, and ends up
/// falling back to linear searches of the borrow stack very often.
/// The cost of making this value too large is that the loop in `Stack::insert` which ensures the
/// entries in the cache stay correct after an insert becomes expensive.
#[cfg(feature = "stack-cache")]
const CACHE_LEN: usize = 32;

/// Extra per-location state.
#[derive(Clone, Debug)]
pub struct Stack {
    /// Used *mostly* as a stack; never empty.
    /// Invariants:
    /// * Above a `SharedReadOnly` there can only be more `SharedReadOnly`.
    /// * Except for `Untagged`, no tag occurs in the stack more than once.
    borrows: Vec<Item>,
    /// If this is `Some(id)`, then the actual current stack is unknown. This can happen when
    /// wildcard pointers are used to access this location. What we do know is that `borrows` are at
    /// the top of the stack, and below it are arbitrarily many items whose `tag` is strictly less
    /// than `id`.
    /// When the bottom is unknown, `borrows` always has a `SharedReadOnly` or `Unique` at the bottom;
    /// we never have the unknown-to-known boundary in an SRW group.
    unknown_bottom: Option<BorTag>,

    /// A small LRU cache of searches of the borrow stack.
    #[cfg(feature = "stack-cache")]
    cache: StackCache,
    /// On a read, we need to disable all `Unique` above the granting item. We can avoid most of
    /// this scan by keeping track of the region of the borrow stack that may contain `Unique`s.
    #[cfg(feature = "stack-cache")]
    unique_range: Range<usize>,
}

impl Stack {
    pub fn retain(&mut self, tags: &FxHashSet<BorTag>) {
        let mut first_removed = None;

        // We never consider removing the bottom-most tag. For stacks without an unknown
        // bottom this preserves the base tag.
        // Note that the algorithm below is based on considering the tag at read_idx - 1,
        // so precisely considering the tag at index 0 for removal when we have an unknown
        // bottom would complicate the implementation. The simplification of not considering
        // it does not have a significant impact on the degree to which the GC mititages
        // memory growth.
        let mut read_idx = 1;
        let mut write_idx = read_idx;
        while read_idx < self.borrows.len() {
            let left = self.borrows[read_idx - 1];
            let this = self.borrows[read_idx];
            let should_keep = match this.perm() {
                // SharedReadWrite is the simplest case, if it's unreachable we can just remove it.
                Permission::SharedReadWrite => tags.contains(&this.tag()),
                // Only retain a Disabled tag if it is terminating a SharedReadWrite block.
                Permission::Disabled => left.perm() == Permission::SharedReadWrite,
                // Unique and SharedReadOnly can terminate a SharedReadWrite block, so only remove
                // them if they are both unreachable and not directly after a SharedReadWrite.
                Permission::Unique | Permission::SharedReadOnly =>
                    left.perm() == Permission::SharedReadWrite || tags.contains(&this.tag()),
            };

            if should_keep {
                if read_idx != write_idx {
                    self.borrows[write_idx] = self.borrows[read_idx];
                }
                write_idx += 1;
            } else if first_removed.is_none() {
                first_removed = Some(read_idx);
            }

            read_idx += 1;
        }
        self.borrows.truncate(write_idx);

        #[cfg(not(feature = "stack-cache"))]
        drop(first_removed); // This is only needed for the stack-cache

        #[cfg(feature = "stack-cache")]
        if let Some(first_removed) = first_removed {
            // Either end of unique_range may have shifted, all we really know is that we can't
            // have introduced a new Unique.
            if !self.unique_range.is_empty() {
                self.unique_range = 0..self.len();
            }

            // Replace any Items which have been collected with the base item, a known-good value.
            for i in 0..CACHE_LEN {
                if self.cache.idx[i] >= first_removed {
                    self.cache.items[i] = self.borrows[0];
                    self.cache.idx[i] = 0;
                }
            }
        }
    }
}

/// A very small cache of searches of a borrow stack, mapping `Item`s to their position in said stack.
///
/// It may seem like maintaining this cache is a waste for small stacks, but
/// (a) iterating over small fixed-size arrays is super fast, and (b) empirically this helps *a lot*,
/// probably because runtime is dominated by large stacks.
#[cfg(feature = "stack-cache")]
#[derive(Clone, Debug)]
struct StackCache {
    items: [Item; CACHE_LEN], // Hot in find_granting
    idx: [usize; CACHE_LEN],  // Hot in grant
}

#[cfg(feature = "stack-cache")]
impl StackCache {
    /// When a tag is used, we call this function to add or refresh it in the cache.
    ///
    /// We use the position in the cache to represent how recently a tag was used; the first position
    /// is the most recently used tag. So an add shifts every element towards the end, and inserts
    /// the new element at the start. We lose the last element.
    /// This strategy is effective at keeping the most-accessed items in the cache, but it costs a
    /// linear shift across the entire cache when we add a new tag.
    fn add(&mut self, idx: usize, item: Item) {
        self.items.copy_within(0..CACHE_LEN - 1, 1);
        self.items[0] = item;
        self.idx.copy_within(0..CACHE_LEN - 1, 1);
        self.idx[0] = idx;
    }
}

impl PartialEq for Stack {
    fn eq(&self, other: &Self) -> bool {
        // All the semantics of Stack are in self.borrows, everything else is caching
        self.borrows == other.borrows
    }
}

impl Eq for Stack {}

impl<'tcx> Stack {
    /// Panics if any of the caching mechanisms have broken,
    /// - The StackCache indices don't refer to the parallel items,
    /// - There are no Unique items outside of first_unique..last_unique
    #[cfg(all(feature = "stack-cache", debug_assertions))]
    fn verify_cache_consistency(&self) {
        // Only a full cache needs to be valid. Also see the comments in find_granting_cache
        // and set_unknown_bottom.
        if self.borrows.len() >= CACHE_LEN {
            for (tag, stack_idx) in self.cache.items.iter().zip(self.cache.idx.iter()) {
                assert_eq!(self.borrows[*stack_idx], *tag);
            }
        }

        // Check that all Unique items fall within unique_range.
        for (idx, item) in self.borrows.iter().enumerate() {
            if item.perm() == Permission::Unique {
                assert!(
                    self.unique_range.contains(&idx),
                    "{:?} {:?}",
                    self.unique_range,
                    self.borrows
                );
            }
        }

        // Check that the unique_range is a valid index into the borrow stack.
        // This asserts that the unique_range's start <= end.
        let _uniques = &self.borrows[self.unique_range.clone()];

        // We cannot assert that the unique range is precise.
        // Both ends may shift around when `Stack::retain` is called. Additionally,
        // when we pop items within the unique range, setting the end of the range precisely
        // requires doing a linear search of the borrow stack, which is exactly the kind of
        // operation that all this caching exists to avoid.
    }

    /// Find the item granting the given kind of access to the given tag, and return where
    /// it is on the stack. For wildcard tags, the given index is approximate, but if *no*
    /// index is given it means the match was *not* in the known part of the stack.
    /// `Ok(None)` indicates it matched the "unknown" part of the stack.
    /// `Err` indicates it was not found.
    pub(super) fn find_granting(
        &mut self,
        access: AccessKind,
        tag: ProvenanceExtra,
        exposed_tags: &FxHashSet<BorTag>,
    ) -> Result<Option<usize>, ()> {
        #[cfg(all(feature = "stack-cache", debug_assertions))]
        self.verify_cache_consistency();

        let ProvenanceExtra::Concrete(tag) = tag else {
            // Handle the wildcard case.
            // Go search the stack for an exposed tag.
            if let Some(idx) =
                self.borrows
                    .iter()
                    .enumerate() // we also need to know *where* in the stack
                    .rev() // search top-to-bottom
                    .find_map(|(idx, item)| {
                        // If the item fits and *might* be this wildcard, use it.
                        if item.perm().grants(access) && exposed_tags.contains(&item.tag()) {
                            Some(idx)
                        } else {
                            None
                        }
                    })
            {
                return Ok(Some(idx));
            }
            // If we couldn't find it in the stack, check the unknown bottom.
            return if self.unknown_bottom.is_some() { Ok(None) } else { Err(()) };
        };

        if let Some(idx) = self.find_granting_tagged(access, tag) {
            return Ok(Some(idx));
        }

        // Couldn't find it in the stack; but if there is an unknown bottom it might be there.
        let found = self.unknown_bottom.is_some_and(|unknown_limit| {
            tag < unknown_limit // unknown_limit is an upper bound for what can be in the unknown bottom.
        });
        if found { Ok(None) } else { Err(()) }
    }

    fn find_granting_tagged(&mut self, access: AccessKind, tag: BorTag) -> Option<usize> {
        #[cfg(feature = "stack-cache")]
        if let Some(idx) = self.find_granting_cache(access, tag) {
            return Some(idx);
        }

        // If we didn't find the tag in the cache, fall back to a linear search of the
        // whole stack, and add the tag to the cache.
        for (stack_idx, item) in self.borrows.iter().enumerate().rev() {
            if tag == item.tag() && item.perm().grants(access) {
                #[cfg(feature = "stack-cache")]
                self.cache.add(stack_idx, *item);
                return Some(stack_idx);
            }
        }
        None
    }

    #[cfg(feature = "stack-cache")]
    fn find_granting_cache(&mut self, access: AccessKind, tag: BorTag) -> Option<usize> {
        // This looks like a common-sense optimization; we're going to do a linear search of the
        // cache or the borrow stack to scan the shorter of the two. This optimization is miniscule
        // and this check actually ensures we do not access an invalid cache.
        // When a stack is created and when items are removed from the top of the borrow stack, we
        // need some valid value to populate the cache. In both cases, we try to use the bottom
        // item. But when the stack is cleared in `set_unknown_bottom` there is nothing we could
        // place in the cache that is correct. But due to the way we populate the cache in
        // `StackCache::add`, we know that when the borrow stack has grown larger than the cache,
        // every slot in the cache is valid.
        if self.borrows.len() <= CACHE_LEN {
            return None;
        }
        // Search the cache for the tag we're looking up
        let cache_idx = self.cache.items.iter().position(|t| t.tag() == tag)?;
        let stack_idx = self.cache.idx[cache_idx];
        // If we found the tag, look up its position in the stack to see if it grants
        // the required permission
        if self.cache.items[cache_idx].perm().grants(access) {
            // If it does, and it's not already in the most-recently-used position, re-insert it at
            // the most-recently-used position. This technically reduces the efficiency of the
            // cache by duplicating elements, but current benchmarks do not seem to benefit from
            // avoiding this duplication.
            // But if the tag is in position 1, avoiding the duplicating add is trivial.
            // If it does, and it's not already in the most-recently-used position, move it there.
            // Except if the tag is in position 1, this is equivalent to just a swap, so do that.
            if cache_idx == 1 {
                self.cache.items.swap(0, 1);
                self.cache.idx.swap(0, 1);
            } else if cache_idx > 1 {
                self.cache.add(stack_idx, self.cache.items[cache_idx]);
            }
            Some(stack_idx)
        } else {
            // Tag is in the cache, but it doesn't grant the required permission
            None
        }
    }

    pub fn insert(&mut self, new_idx: usize, new: Item) {
        self.borrows.insert(new_idx, new);

        #[cfg(feature = "stack-cache")]
        self.insert_cache(new_idx, new);
    }

    #[cfg(feature = "stack-cache")]
    fn insert_cache(&mut self, new_idx: usize, new: Item) {
        // Adjust the possibly-unique range if an insert occurs before or within it
        if self.unique_range.start >= new_idx {
            self.unique_range.start += 1;
        }
        if self.unique_range.end >= new_idx {
            self.unique_range.end += 1;
        }
        if new.perm() == Permission::Unique {
            // If this is the only Unique, set the range to contain just the new item.
            if self.unique_range.is_empty() {
                self.unique_range = new_idx..new_idx + 1;
            } else {
                // We already have other Unique items, expand the range to include the new item
                self.unique_range.start = self.unique_range.start.min(new_idx);
                self.unique_range.end = self.unique_range.end.max(new_idx + 1);
            }
        }

        // The above insert changes the meaning of every index in the cache >= new_idx, so now
        // we need to find every one of those indexes and increment it.
        // But if the insert is at the end (equivalent to a push), we can skip this step because
        // it didn't change the position of any other items.
        if new_idx != self.borrows.len() - 1 {
            for idx in &mut self.cache.idx {
                if *idx >= new_idx {
                    *idx += 1;
                }
            }
        }

        // This primes the cache for the next access, which is almost always the just-added tag.
        self.cache.add(new_idx, new);

        #[cfg(debug_assertions)]
        self.verify_cache_consistency();
    }

    /// Construct a new `Stack` using the passed `Item` as the base tag.
    pub fn new(item: Item) -> Self {
        Stack {
            borrows: vec![item],
            unknown_bottom: None,
            #[cfg(feature = "stack-cache")]
            cache: StackCache { idx: [0; CACHE_LEN], items: [item; CACHE_LEN] },
            #[cfg(feature = "stack-cache")]
            unique_range: if item.perm() == Permission::Unique { 0..1 } else { 0..0 },
        }
    }

    pub fn get(&self, idx: usize) -> Option<Item> {
        self.borrows.get(idx).cloned()
    }

    #[allow(clippy::len_without_is_empty)] // Stacks are never empty
    pub fn len(&self) -> usize {
        self.borrows.len()
    }

    pub fn unknown_bottom(&self) -> Option<BorTag> {
        self.unknown_bottom
    }

    pub fn set_unknown_bottom(&mut self, tag: BorTag) {
        // We clear the borrow stack but the lookup cache doesn't support clearing per se. Instead,
        // there is a check explained in `find_granting_cache` which protects against accessing the
        // cache when it has been cleared and not yet refilled.
        self.borrows.clear();
        self.unknown_bottom = Some(tag);
        #[cfg(feature = "stack-cache")]
        {
            self.unique_range = 0..0;
        }
    }

    /// Find all `Unique` elements in this borrow stack above `granting_idx`, pass a copy of them
    /// to the `visitor`, then set their `Permission` to `Disabled`.
    pub fn disable_uniques_starting_at(
        &mut self,
        disable_start: usize,
        mut visitor: impl FnMut(Item) -> crate::InterpResult<'tcx>,
    ) -> crate::InterpResult<'tcx> {
        #[cfg(feature = "stack-cache")]
        let unique_range = self.unique_range.clone();
        #[cfg(not(feature = "stack-cache"))]
        let unique_range = 0..self.len();

        if disable_start <= unique_range.end {
            let lower = unique_range.start.max(disable_start);
            let upper = unique_range.end;
            for item in &mut self.borrows[lower..upper] {
                if item.perm() == Permission::Unique {
                    log::trace!("access: disabling item {:?}", item);
                    visitor(*item)?;
                    item.set_permission(Permission::Disabled);
                    // Also update all copies of this item in the cache.
                    #[cfg(feature = "stack-cache")]
                    for it in &mut self.cache.items {
                        if it.tag() == item.tag() {
                            it.set_permission(Permission::Disabled);
                        }
                    }
                }
            }
        }

        #[cfg(feature = "stack-cache")]
        if disable_start <= self.unique_range.start {
            // We disabled all Unique items
            self.unique_range.start = 0;
            self.unique_range.end = 0;
        } else {
            // Truncate the range to only include items up to the index that we started disabling
            // at.
            self.unique_range.end = self.unique_range.end.min(disable_start);
        }

        #[cfg(all(feature = "stack-cache", debug_assertions))]
        self.verify_cache_consistency();

        Ok(())
    }

    /// Produces an iterator which iterates over `range` in reverse, and when dropped removes that
    /// range of `Item`s from this `Stack`.
    pub fn pop_items_after<V: FnMut(Item) -> crate::InterpResult<'tcx>>(
        &mut self,
        start: usize,
        mut visitor: V,
    ) -> crate::InterpResult<'tcx> {
        while self.borrows.len() > start {
            let item = self.borrows.pop().unwrap();
            visitor(item)?;
        }

        #[cfg(feature = "stack-cache")]
        if !self.borrows.is_empty() {
            // After we remove from the borrow stack, every aspect of our caching may be invalid, but it is
            // also possible that the whole cache is still valid. So we call this method to repair what
            // aspects of the cache are now invalid, instead of resetting the whole thing to a trivially
            // valid default state.
            let base_tag = self.borrows[0];
            let mut removed = 0;
            let mut cursor = 0;
            // Remove invalid entries from the cache by rotating them to the end of the cache, then
            // keep track of how many invalid elements there are and overwrite them with the base tag.
            // The base tag here serves as a harmless default value.
            for _ in 0..CACHE_LEN - 1 {
                if self.cache.idx[cursor] >= start {
                    self.cache.idx[cursor..CACHE_LEN - removed].rotate_left(1);
                    self.cache.items[cursor..CACHE_LEN - removed].rotate_left(1);
                    removed += 1;
                } else {
                    cursor += 1;
                }
            }
            for i in CACHE_LEN - removed - 1..CACHE_LEN {
                self.cache.idx[i] = 0;
                self.cache.items[i] = base_tag;
            }

            if start <= self.unique_range.start {
                // We removed all the Unique items
                self.unique_range = 0..0;
            } else {
                // Ensure the range doesn't extend past the new top of the stack
                self.unique_range.end = self.unique_range.end.min(start);
            }
        } else {
            self.unique_range = 0..0;
        }

        #[cfg(all(feature = "stack-cache", debug_assertions))]
        self.verify_cache_consistency();
        Ok(())
    }
}