1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
//! A number of passes which remove various redundancies in the CFG.
//!
//! The `SimplifyCfg` pass gets rid of unnecessary blocks in the CFG, whereas the `SimplifyLocals`
//! gets rid of all the unnecessary local variable declarations.
//!
//! The `SimplifyLocals` pass is kinda expensive and therefore not very suitable to be run often.
//! Most of the passes should not care or be impacted in meaningful ways due to extra locals
//! either, so running the pass once, right before codegen, should suffice.
//!
//! On the other side of the spectrum, the `SimplifyCfg` pass is considerably cheap to run, thus
//! one should run it after every pass which may modify CFG in significant ways. This pass must
//! also be run before any analysis passes because it removes dead blocks, and some of these can be
//! ill-typed.
//!
//! The cause of this typing issue is typeck allowing most blocks whose end is not reachable have
//! an arbitrary return type, rather than having the usual () return type (as a note, typeck's
//! notion of reachability is in fact slightly weaker than MIR CFG reachability - see #31617). A
//! standard example of the situation is:
//!
//! ```rust
//!   fn example() {
//!       let _a: char = { return; };
//!   }
//! ```
//!
//! Here the block (`{ return; }`) has the return type `char`, rather than `()`, but the MIR we
//! naively generate still contains the `_a = ()` write in the unreachable block "after" the
//! return.

use crate::MirPass;
use rustc_data_structures::fx::FxHashSet;
use rustc_index::vec::{Idx, IndexVec};
use rustc_middle::mir::coverage::*;
use rustc_middle::mir::visit::{MutVisitor, MutatingUseContext, PlaceContext, Visitor};
use rustc_middle::mir::*;
use rustc_middle::ty::TyCtxt;
use smallvec::SmallVec;

pub struct SimplifyCfg {
    label: String,
}

impl SimplifyCfg {
    pub fn new(label: &str) -> Self {
        SimplifyCfg { label: format!("SimplifyCfg-{}", label) }
    }
}

pub fn simplify_cfg<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
    CfgSimplifier::new(body).simplify();
    remove_dead_blocks(tcx, body);

    // FIXME: Should probably be moved into some kind of pass manager
    body.basic_blocks_mut().raw.shrink_to_fit();
}

impl<'tcx> MirPass<'tcx> for SimplifyCfg {
    fn name(&self) -> &str {
        &self.label
    }

    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
        debug!("SimplifyCfg({:?}) - simplifying {:?}", self.label, body.source);
        simplify_cfg(tcx, body);
    }
}

pub struct CfgSimplifier<'a, 'tcx> {
    basic_blocks: &'a mut IndexVec<BasicBlock, BasicBlockData<'tcx>>,
    pred_count: IndexVec<BasicBlock, u32>,
}

impl<'a, 'tcx> CfgSimplifier<'a, 'tcx> {
    pub fn new(body: &'a mut Body<'tcx>) -> Self {
        let mut pred_count = IndexVec::from_elem(0u32, &body.basic_blocks);

        // we can't use mir.predecessors() here because that counts
        // dead blocks, which we don't want to.
        pred_count[START_BLOCK] = 1;

        for (_, data) in traversal::preorder(body) {
            if let Some(ref term) = data.terminator {
                for tgt in term.successors() {
                    pred_count[tgt] += 1;
                }
            }
        }

        let basic_blocks = body.basic_blocks_mut();

        CfgSimplifier { basic_blocks, pred_count }
    }

    pub fn simplify(mut self) {
        self.strip_nops();

        // Vec of the blocks that should be merged. We store the indices here, instead of the
        // statements itself to avoid moving the (relatively) large statements twice.
        // We do not push the statements directly into the target block (`bb`) as that is slower
        // due to additional reallocations
        let mut merged_blocks = Vec::new();
        loop {
            let mut changed = false;

            for bb in self.basic_blocks.indices() {
                if self.pred_count[bb] == 0 {
                    continue;
                }

                debug!("simplifying {:?}", bb);

                let mut terminator =
                    self.basic_blocks[bb].terminator.take().expect("invalid terminator state");

                for successor in terminator.successors_mut() {
                    self.collapse_goto_chain(successor, &mut changed);
                }

                let mut inner_changed = true;
                merged_blocks.clear();
                while inner_changed {
                    inner_changed = false;
                    inner_changed |= self.simplify_branch(&mut terminator);
                    inner_changed |= self.merge_successor(&mut merged_blocks, &mut terminator);
                    changed |= inner_changed;
                }

                let statements_to_merge =
                    merged_blocks.iter().map(|&i| self.basic_blocks[i].statements.len()).sum();

                if statements_to_merge > 0 {
                    let mut statements = std::mem::take(&mut self.basic_blocks[bb].statements);
                    statements.reserve(statements_to_merge);
                    for &from in &merged_blocks {
                        statements.append(&mut self.basic_blocks[from].statements);
                    }
                    self.basic_blocks[bb].statements = statements;
                }

                self.basic_blocks[bb].terminator = Some(terminator);
            }

            if !changed {
                break;
            }
        }
    }

    /// This function will return `None` if
    /// * the block has statements
    /// * the block has a terminator other than `goto`
    /// * the block has no terminator (meaning some other part of the current optimization stole it)
    fn take_terminator_if_simple_goto(&mut self, bb: BasicBlock) -> Option<Terminator<'tcx>> {
        match self.basic_blocks[bb] {
            BasicBlockData {
                ref statements,
                terminator:
                    ref mut terminator @ Some(Terminator { kind: TerminatorKind::Goto { .. }, .. }),
                ..
            } if statements.is_empty() => terminator.take(),
            // if `terminator` is None, this means we are in a loop. In that
            // case, let all the loop collapse to its entry.
            _ => None,
        }
    }

    /// Collapse a goto chain starting from `start`
    fn collapse_goto_chain(&mut self, start: &mut BasicBlock, changed: &mut bool) {
        // Using `SmallVec` here, because in some logs on libcore oli-obk saw many single-element
        // goto chains. We should probably benchmark different sizes.
        let mut terminators: SmallVec<[_; 1]> = Default::default();
        let mut current = *start;
        while let Some(terminator) = self.take_terminator_if_simple_goto(current) {
            let Terminator { kind: TerminatorKind::Goto { target }, .. } = terminator else {
                unreachable!();
            };
            terminators.push((current, terminator));
            current = target;
        }
        let last = current;
        *start = last;
        while let Some((current, mut terminator)) = terminators.pop() {
            let Terminator { kind: TerminatorKind::Goto { ref mut target }, .. } = terminator else {
                unreachable!();
            };
            *changed |= *target != last;
            *target = last;
            debug!("collapsing goto chain from {:?} to {:?}", current, target);

            if self.pred_count[current] == 1 {
                // This is the last reference to current, so the pred-count to
                // to target is moved into the current block.
                self.pred_count[current] = 0;
            } else {
                self.pred_count[*target] += 1;
                self.pred_count[current] -= 1;
            }
            self.basic_blocks[current].terminator = Some(terminator);
        }
    }

    // merge a block with 1 `goto` predecessor to its parent
    fn merge_successor(
        &mut self,
        merged_blocks: &mut Vec<BasicBlock>,
        terminator: &mut Terminator<'tcx>,
    ) -> bool {
        let target = match terminator.kind {
            TerminatorKind::Goto { target } if self.pred_count[target] == 1 => target,
            _ => return false,
        };

        debug!("merging block {:?} into {:?}", target, terminator);
        *terminator = match self.basic_blocks[target].terminator.take() {
            Some(terminator) => terminator,
            None => {
                // unreachable loop - this should not be possible, as we
                // don't strand blocks, but handle it correctly.
                return false;
            }
        };

        merged_blocks.push(target);
        self.pred_count[target] = 0;

        true
    }

    // turn a branch with all successors identical to a goto
    fn simplify_branch(&mut self, terminator: &mut Terminator<'tcx>) -> bool {
        match terminator.kind {
            TerminatorKind::SwitchInt { .. } => {}
            _ => return false,
        };

        let first_succ = {
            if let Some(first_succ) = terminator.successors().next() {
                if terminator.successors().all(|s| s == first_succ) {
                    let count = terminator.successors().count();
                    self.pred_count[first_succ] -= (count - 1) as u32;
                    first_succ
                } else {
                    return false;
                }
            } else {
                return false;
            }
        };

        debug!("simplifying branch {:?}", terminator);
        terminator.kind = TerminatorKind::Goto { target: first_succ };
        true
    }

    fn strip_nops(&mut self) {
        for blk in self.basic_blocks.iter_mut() {
            blk.statements.retain(|stmt| !matches!(stmt.kind, StatementKind::Nop))
        }
    }
}

pub fn remove_dead_blocks<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
    let reachable = traversal::reachable_as_bitset(body);
    let num_blocks = body.basic_blocks.len();
    if num_blocks == reachable.count() {
        return;
    }

    let basic_blocks = body.basic_blocks.as_mut();
    let source_scopes = &body.source_scopes;
    let mut replacements: Vec<_> = (0..num_blocks).map(BasicBlock::new).collect();
    let mut used_blocks = 0;
    for alive_index in reachable.iter() {
        let alive_index = alive_index.index();
        replacements[alive_index] = BasicBlock::new(used_blocks);
        if alive_index != used_blocks {
            // Swap the next alive block data with the current available slot. Since
            // alive_index is non-decreasing this is a valid operation.
            basic_blocks.raw.swap(alive_index, used_blocks);
        }
        used_blocks += 1;
    }

    if tcx.sess.instrument_coverage() {
        save_unreachable_coverage(basic_blocks, source_scopes, used_blocks);
    }

    basic_blocks.raw.truncate(used_blocks);

    for block in basic_blocks {
        for target in block.terminator_mut().successors_mut() {
            *target = replacements[target.index()];
        }
    }
}

/// Some MIR transforms can determine at compile time that a sequences of
/// statements will never be executed, so they can be dropped from the MIR.
/// For example, an `if` or `else` block that is guaranteed to never be executed
/// because its condition can be evaluated at compile time, such as by const
/// evaluation: `if false { ... }`.
///
/// Those statements are bypassed by redirecting paths in the CFG around the
/// `dead blocks`; but with `-C instrument-coverage`, the dead blocks usually
/// include `Coverage` statements representing the Rust source code regions to
/// be counted at runtime. Without these `Coverage` statements, the regions are
/// lost, and the Rust source code will show no coverage information.
///
/// What we want to show in a coverage report is the dead code with coverage
/// counts of `0`. To do this, we need to save the code regions, by injecting
/// `Unreachable` coverage statements. These are non-executable statements whose
/// code regions are still recorded in the coverage map, representing regions
/// with `0` executions.
///
/// If there are no live `Counter` `Coverage` statements remaining, we remove
/// `Coverage` statements along with the dead blocks. Since at least one
/// counter per function is required by LLVM (and necessary, to add the
/// `function_hash` to the counter's call to the LLVM intrinsic
/// `instrprof.increment()`).
///
/// The `generator::StateTransform` MIR pass and MIR inlining can create
/// atypical conditions, where all live `Counter`s are dropped from the MIR.
///
/// With MIR inlining we can have coverage counters belonging to different
/// instances in a single body, so the strategy described above is applied to
/// coverage counters from each instance individually.
fn save_unreachable_coverage(
    basic_blocks: &mut IndexVec<BasicBlock, BasicBlockData<'_>>,
    source_scopes: &IndexVec<SourceScope, SourceScopeData<'_>>,
    first_dead_block: usize,
) {
    // Identify instances that still have some live coverage counters left.
    let mut live = FxHashSet::default();
    for basic_block in &basic_blocks.raw[0..first_dead_block] {
        for statement in &basic_block.statements {
            let StatementKind::Coverage(coverage) = &statement.kind else { continue };
            let CoverageKind::Counter { .. } = coverage.kind else { continue };
            let instance = statement.source_info.scope.inlined_instance(source_scopes);
            live.insert(instance);
        }
    }

    for block in &mut basic_blocks.raw[..first_dead_block] {
        for statement in &mut block.statements {
            let StatementKind::Coverage(_) = &statement.kind else { continue };
            let instance = statement.source_info.scope.inlined_instance(source_scopes);
            if !live.contains(&instance) {
                statement.make_nop();
            }
        }
    }

    if live.is_empty() {
        return;
    }

    // Retain coverage for instances that still have some live counters left.
    let mut retained_coverage = Vec::new();
    for dead_block in &basic_blocks.raw[first_dead_block..] {
        for statement in &dead_block.statements {
            let StatementKind::Coverage(coverage) = &statement.kind else { continue };
            let Some(code_region) = &coverage.code_region else { continue };
            let instance = statement.source_info.scope.inlined_instance(source_scopes);
            if live.contains(&instance) {
                retained_coverage.push((statement.source_info, code_region.clone()));
            }
        }
    }

    let start_block = &mut basic_blocks[START_BLOCK];
    start_block.statements.extend(retained_coverage.into_iter().map(
        |(source_info, code_region)| Statement {
            source_info,
            kind: StatementKind::Coverage(Box::new(Coverage {
                kind: CoverageKind::Unreachable,
                code_region: Some(code_region),
            })),
        },
    ));
}

pub struct SimplifyLocals;

impl<'tcx> MirPass<'tcx> for SimplifyLocals {
    fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
        sess.mir_opt_level() > 0
    }

    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
        trace!("running SimplifyLocals on {:?}", body.source);
        simplify_locals(body, tcx);
    }
}

pub fn simplify_locals<'tcx>(body: &mut Body<'tcx>, tcx: TyCtxt<'tcx>) {
    // First, we're going to get a count of *actual* uses for every `Local`.
    let mut used_locals = UsedLocals::new(body);

    // Next, we're going to remove any `Local` with zero actual uses. When we remove those
    // `Locals`, we're also going to subtract any uses of other `Locals` from the `used_locals`
    // count. For example, if we removed `_2 = discriminant(_1)`, then we'll subtract one from
    // `use_counts[_1]`. That in turn might make `_1` unused, so we loop until we hit a
    // fixedpoint where there are no more unused locals.
    remove_unused_definitions(&mut used_locals, body);

    // Finally, we'll actually do the work of shrinking `body.local_decls` and remapping the `Local`s.
    let map = make_local_map(&mut body.local_decls, &used_locals);

    // Only bother running the `LocalUpdater` if we actually found locals to remove.
    if map.iter().any(Option::is_none) {
        // Update references to all vars and tmps now
        let mut updater = LocalUpdater { map, tcx };
        updater.visit_body_preserves_cfg(body);

        body.local_decls.shrink_to_fit();
    }
}

/// Construct the mapping while swapping out unused stuff out from the `vec`.
fn make_local_map<V>(
    local_decls: &mut IndexVec<Local, V>,
    used_locals: &UsedLocals,
) -> IndexVec<Local, Option<Local>> {
    let mut map: IndexVec<Local, Option<Local>> = IndexVec::from_elem(None, &*local_decls);
    let mut used = Local::new(0);

    for alive_index in local_decls.indices() {
        // `is_used` treats the `RETURN_PLACE` and arguments as used.
        if !used_locals.is_used(alive_index) {
            continue;
        }

        map[alive_index] = Some(used);
        if alive_index != used {
            local_decls.swap(alive_index, used);
        }
        used.increment_by(1);
    }
    local_decls.truncate(used.index());
    map
}

/// Keeps track of used & unused locals.
struct UsedLocals {
    increment: bool,
    arg_count: u32,
    use_count: IndexVec<Local, u32>,
}

impl UsedLocals {
    /// Determines which locals are used & unused in the given body.
    fn new(body: &Body<'_>) -> Self {
        let mut this = Self {
            increment: true,
            arg_count: body.arg_count.try_into().unwrap(),
            use_count: IndexVec::from_elem(0, &body.local_decls),
        };
        this.visit_body(body);
        this
    }

    /// Checks if local is used.
    ///
    /// Return place and arguments are always considered used.
    fn is_used(&self, local: Local) -> bool {
        trace!("is_used({:?}): use_count: {:?}", local, self.use_count[local]);
        local.as_u32() <= self.arg_count || self.use_count[local] != 0
    }

    /// Updates the use counts to reflect the removal of given statement.
    fn statement_removed(&mut self, statement: &Statement<'_>) {
        self.increment = false;

        // The location of the statement is irrelevant.
        let location = Location { block: START_BLOCK, statement_index: 0 };
        self.visit_statement(statement, location);
    }

    /// Visits a left-hand side of an assignment.
    fn visit_lhs(&mut self, place: &Place<'_>, location: Location) {
        if place.is_indirect() {
            // A use, not a definition.
            self.visit_place(place, PlaceContext::MutatingUse(MutatingUseContext::Store), location);
        } else {
            // A definition. The base local itself is not visited, so this occurrence is not counted
            // toward its use count. There might be other locals still, used in an indexing
            // projection.
            self.super_projection(
                place.as_ref(),
                PlaceContext::MutatingUse(MutatingUseContext::Projection),
                location,
            );
        }
    }
}

impl<'tcx> Visitor<'tcx> for UsedLocals {
    fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
        match statement.kind {
            StatementKind::Intrinsic(..)
            | StatementKind::Retag(..)
            | StatementKind::Coverage(..)
            | StatementKind::FakeRead(..)
            | StatementKind::AscribeUserType(..) => {
                self.super_statement(statement, location);
            }

            StatementKind::Nop => {}

            StatementKind::StorageLive(_local) | StatementKind::StorageDead(_local) => {}

            StatementKind::Assign(box (ref place, ref rvalue)) => {
                if rvalue.is_safe_to_remove() {
                    self.visit_lhs(place, location);
                    self.visit_rvalue(rvalue, location);
                } else {
                    self.super_statement(statement, location);
                }
            }

            StatementKind::SetDiscriminant { ref place, variant_index: _ }
            | StatementKind::Deinit(ref place) => {
                self.visit_lhs(place, location);
            }
        }
    }

    fn visit_local(&mut self, local: Local, _ctx: PlaceContext, _location: Location) {
        if self.increment {
            self.use_count[local] += 1;
        } else {
            assert_ne!(self.use_count[local], 0);
            self.use_count[local] -= 1;
        }
    }
}

/// Removes unused definitions. Updates the used locals to reflect the changes made.
fn remove_unused_definitions(used_locals: &mut UsedLocals, body: &mut Body<'_>) {
    // The use counts are updated as we remove the statements. A local might become unused
    // during the retain operation, leading to a temporary inconsistency (storage statements or
    // definitions referencing the local might remain). For correctness it is crucial that this
    // computation reaches a fixed point.

    let mut modified = true;
    while modified {
        modified = false;

        for data in body.basic_blocks.as_mut_preserves_cfg() {
            // Remove unnecessary StorageLive and StorageDead annotations.
            data.statements.retain(|statement| {
                let keep = match &statement.kind {
                    StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
                        used_locals.is_used(*local)
                    }
                    StatementKind::Assign(box (place, _)) => used_locals.is_used(place.local),

                    StatementKind::SetDiscriminant { ref place, .. }
                    | StatementKind::Deinit(ref place) => used_locals.is_used(place.local),
                    _ => true,
                };

                if !keep {
                    trace!("removing statement {:?}", statement);
                    modified = true;
                    used_locals.statement_removed(statement);
                }

                keep
            });
        }
    }
}

struct LocalUpdater<'tcx> {
    map: IndexVec<Local, Option<Local>>,
    tcx: TyCtxt<'tcx>,
}

impl<'tcx> MutVisitor<'tcx> for LocalUpdater<'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn visit_local(&mut self, l: &mut Local, _: PlaceContext, _: Location) {
        *l = self.map[*l].unwrap();
    }
}