1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
use rustc_hir as hir;
use rustc_hir::lang_items::LangItem;
use rustc_middle::ty::layout::{
    fn_can_unwind, FnAbiError, HasParamEnv, HasTyCtxt, LayoutCx, LayoutOf, TyAndLayout,
};
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_session::config::OptLevel;
use rustc_span::def_id::DefId;
use rustc_target::abi::call::{
    ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, Conv, FnAbi, PassMode, Reg, RegKind,
};
use rustc_target::abi::*;
use rustc_target::spec::abi::Abi as SpecAbi;

use std::iter;

pub fn provide(providers: &mut ty::query::Providers) {
    *providers = ty::query::Providers { fn_abi_of_fn_ptr, fn_abi_of_instance, ..*providers };
}

// NOTE(eddyb) this is private to avoid using it from outside of
// `fn_abi_of_instance` - any other uses are either too high-level
// for `Instance` (e.g. typeck would use `Ty::fn_sig` instead),
// or should go through `FnAbi` instead, to avoid losing any
// adjustments `fn_abi_of_instance` might be performing.
#[tracing::instrument(level = "debug", skip(tcx, param_env))]
fn fn_sig_for_fn_abi<'tcx>(
    tcx: TyCtxt<'tcx>,
    instance: ty::Instance<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
) -> ty::PolyFnSig<'tcx> {
    let ty = instance.ty(tcx, param_env);
    match *ty.kind() {
        ty::FnDef(..) => {
            // HACK(davidtwco,eddyb): This is a workaround for polymorphization considering
            // parameters unused if they show up in the signature, but not in the `mir::Body`
            // (i.e. due to being inside a projection that got normalized, see
            // `src/test/ui/polymorphization/normalized_sig_types.rs`), and codegen not keeping
            // track of a polymorphization `ParamEnv` to allow normalizing later.
            //
            // We normalize the `fn_sig` again after substituting at a later point.
            let mut sig = match *ty.kind() {
                ty::FnDef(def_id, substs) => tcx
                    .bound_fn_sig(def_id)
                    .map_bound(|fn_sig| {
                        tcx.normalize_erasing_regions(tcx.param_env(def_id), fn_sig)
                    })
                    .subst(tcx, substs),
                _ => unreachable!(),
            };

            if let ty::InstanceDef::VTableShim(..) = instance.def {
                // Modify `fn(self, ...)` to `fn(self: *mut Self, ...)`.
                sig = sig.map_bound(|mut sig| {
                    let mut inputs_and_output = sig.inputs_and_output.to_vec();
                    inputs_and_output[0] = tcx.mk_mut_ptr(inputs_and_output[0]);
                    sig.inputs_and_output = tcx.intern_type_list(&inputs_and_output);
                    sig
                });
            }
            sig
        }
        ty::Closure(def_id, substs) => {
            let sig = substs.as_closure().sig();

            let bound_vars = tcx.mk_bound_variable_kinds(
                sig.bound_vars().iter().chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))),
            );
            let br = ty::BoundRegion {
                var: ty::BoundVar::from_usize(bound_vars.len() - 1),
                kind: ty::BoundRegionKind::BrEnv,
            };
            let env_region = ty::ReLateBound(ty::INNERMOST, br);
            let env_ty = tcx.closure_env_ty(def_id, substs, env_region).unwrap();

            let sig = sig.skip_binder();
            ty::Binder::bind_with_vars(
                tcx.mk_fn_sig(
                    iter::once(env_ty).chain(sig.inputs().iter().cloned()),
                    sig.output(),
                    sig.c_variadic,
                    sig.unsafety,
                    sig.abi,
                ),
                bound_vars,
            )
        }
        ty::Generator(did, substs, _) => {
            let sig = substs.as_generator().poly_sig();

            let bound_vars = tcx.mk_bound_variable_kinds(
                sig.bound_vars().iter().chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))),
            );
            let br = ty::BoundRegion {
                var: ty::BoundVar::from_usize(bound_vars.len() - 1),
                kind: ty::BoundRegionKind::BrEnv,
            };
            let env_region = ty::ReLateBound(ty::INNERMOST, br);
            let env_ty = tcx.mk_mut_ref(tcx.mk_region(env_region), ty);

            let pin_did = tcx.require_lang_item(LangItem::Pin, None);
            let pin_adt_ref = tcx.adt_def(pin_did);
            let pin_substs = tcx.intern_substs(&[env_ty.into()]);
            let env_ty = tcx.mk_adt(pin_adt_ref, pin_substs);

            let sig = sig.skip_binder();
            // The `FnSig` and the `ret_ty` here is for a generators main
            // `Generator::resume(...) -> GeneratorState` function in case we
            // have an ordinary generator, or the `Future::poll(...) -> Poll`
            // function in case this is a special generator backing an async construct.
            let ret_ty = if tcx.generator_is_async(did) {
                let state_did = tcx.require_lang_item(LangItem::Poll, None);
                let state_adt_ref = tcx.adt_def(state_did);
                let state_substs = tcx.intern_substs(&[sig.return_ty.into()]);
                tcx.mk_adt(state_adt_ref, state_substs)
            } else {
                let state_did = tcx.require_lang_item(LangItem::GeneratorState, None);
                let state_adt_ref = tcx.adt_def(state_did);
                let state_substs = tcx.intern_substs(&[sig.yield_ty.into(), sig.return_ty.into()]);
                tcx.mk_adt(state_adt_ref, state_substs)
            };

            ty::Binder::bind_with_vars(
                tcx.mk_fn_sig(
                    [env_ty, sig.resume_ty].iter(),
                    &ret_ty,
                    false,
                    hir::Unsafety::Normal,
                    rustc_target::spec::abi::Abi::Rust,
                ),
                bound_vars,
            )
        }
        _ => bug!("unexpected type {:?} in Instance::fn_sig", ty),
    }
}

#[inline]
fn conv_from_spec_abi(tcx: TyCtxt<'_>, abi: SpecAbi) -> Conv {
    use rustc_target::spec::abi::Abi::*;
    match tcx.sess.target.adjust_abi(abi) {
        RustIntrinsic | PlatformIntrinsic | Rust | RustCall => Conv::Rust,
        RustCold => Conv::RustCold,

        // It's the ABI's job to select this, not ours.
        System { .. } => bug!("system abi should be selected elsewhere"),
        EfiApi => bug!("eficall abi should be selected elsewhere"),

        Stdcall { .. } => Conv::X86Stdcall,
        Fastcall { .. } => Conv::X86Fastcall,
        Vectorcall { .. } => Conv::X86VectorCall,
        Thiscall { .. } => Conv::X86ThisCall,
        C { .. } => Conv::C,
        Unadjusted => Conv::C,
        Win64 { .. } => Conv::X86_64Win64,
        SysV64 { .. } => Conv::X86_64SysV,
        Aapcs { .. } => Conv::ArmAapcs,
        CCmseNonSecureCall => Conv::CCmseNonSecureCall,
        PtxKernel => Conv::PtxKernel,
        Msp430Interrupt => Conv::Msp430Intr,
        X86Interrupt => Conv::X86Intr,
        AmdGpuKernel => Conv::AmdGpuKernel,
        AvrInterrupt => Conv::AvrInterrupt,
        AvrNonBlockingInterrupt => Conv::AvrNonBlockingInterrupt,
        Wasm => Conv::C,

        // These API constants ought to be more specific...
        Cdecl { .. } => Conv::C,
    }
}

fn fn_abi_of_fn_ptr<'tcx>(
    tcx: TyCtxt<'tcx>,
    query: ty::ParamEnvAnd<'tcx, (ty::PolyFnSig<'tcx>, &'tcx ty::List<Ty<'tcx>>)>,
) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> {
    let (param_env, (sig, extra_args)) = query.into_parts();

    let cx = LayoutCx { tcx, param_env };
    fn_abi_new_uncached(&cx, sig, extra_args, None, None, false)
}

fn fn_abi_of_instance<'tcx>(
    tcx: TyCtxt<'tcx>,
    query: ty::ParamEnvAnd<'tcx, (ty::Instance<'tcx>, &'tcx ty::List<Ty<'tcx>>)>,
) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> {
    let (param_env, (instance, extra_args)) = query.into_parts();

    let sig = fn_sig_for_fn_abi(tcx, instance, param_env);

    let caller_location = if instance.def.requires_caller_location(tcx) {
        Some(tcx.caller_location_ty())
    } else {
        None
    };

    fn_abi_new_uncached(
        &LayoutCx { tcx, param_env },
        sig,
        extra_args,
        caller_location,
        Some(instance.def_id()),
        matches!(instance.def, ty::InstanceDef::Virtual(..)),
    )
}

// Handle safe Rust thin and fat pointers.
fn adjust_for_rust_scalar<'tcx>(
    cx: LayoutCx<'tcx, TyCtxt<'tcx>>,
    attrs: &mut ArgAttributes,
    scalar: Scalar,
    layout: TyAndLayout<'tcx>,
    offset: Size,
    is_return: bool,
) {
    // Booleans are always a noundef i1 that needs to be zero-extended.
    if scalar.is_bool() {
        attrs.ext(ArgExtension::Zext);
        attrs.set(ArgAttribute::NoUndef);
        return;
    }

    // Scalars which have invalid values cannot be undef.
    if !scalar.is_always_valid(&cx) {
        attrs.set(ArgAttribute::NoUndef);
    }

    // Only pointer types handled below.
    let Scalar::Initialized { value: Pointer, valid_range} = scalar else { return };

    if !valid_range.contains(0) {
        attrs.set(ArgAttribute::NonNull);
    }

    if let Some(pointee) = layout.pointee_info_at(&cx, offset) {
        if let Some(kind) = pointee.safe {
            attrs.pointee_align = Some(pointee.align);

            // `Box` (`UniqueBorrowed`) are not necessarily dereferenceable
            // for the entire duration of the function as they can be deallocated
            // at any time. Same for shared mutable references. If LLVM had a
            // way to say "dereferenceable on entry" we could use it here.
            attrs.pointee_size = match kind {
                PointerKind::UniqueBorrowed
                | PointerKind::UniqueBorrowedPinned
                | PointerKind::Frozen => pointee.size,
                PointerKind::SharedMutable | PointerKind::UniqueOwned => Size::ZERO,
            };

            // `Box`, `&T`, and `&mut T` cannot be undef.
            // Note that this only applies to the value of the pointer itself;
            // this attribute doesn't make it UB for the pointed-to data to be undef.
            attrs.set(ArgAttribute::NoUndef);

            // The aliasing rules for `Box<T>` are still not decided, but currently we emit
            // `noalias` for it. This can be turned off using an unstable flag.
            // See https://github.com/rust-lang/unsafe-code-guidelines/issues/326
            let noalias_for_box = cx.tcx.sess.opts.unstable_opts.box_noalias.unwrap_or(true);

            // `&mut` pointer parameters never alias other parameters,
            // or mutable global data
            //
            // `&T` where `T` contains no `UnsafeCell<U>` is immutable,
            // and can be marked as both `readonly` and `noalias`, as
            // LLVM's definition of `noalias` is based solely on memory
            // dependencies rather than pointer equality
            //
            // Due to past miscompiles in LLVM, we apply a separate NoAliasMutRef attribute
            // for UniqueBorrowed arguments, so that the codegen backend can decide whether
            // or not to actually emit the attribute. It can also be controlled with the
            // `-Zmutable-noalias` debugging option.
            let no_alias = match kind {
                PointerKind::SharedMutable
                | PointerKind::UniqueBorrowed
                | PointerKind::UniqueBorrowedPinned => false,
                PointerKind::UniqueOwned => noalias_for_box,
                PointerKind::Frozen => !is_return,
            };
            if no_alias {
                attrs.set(ArgAttribute::NoAlias);
            }

            if kind == PointerKind::Frozen && !is_return {
                attrs.set(ArgAttribute::ReadOnly);
            }

            if kind == PointerKind::UniqueBorrowed && !is_return {
                attrs.set(ArgAttribute::NoAliasMutRef);
            }
        }
    }
}

// FIXME(eddyb) perhaps group the signature/type-containing (or all of them?)
// arguments of this method, into a separate `struct`.
#[tracing::instrument(level = "debug", skip(cx, caller_location, fn_def_id, force_thin_self_ptr))]
fn fn_abi_new_uncached<'tcx>(
    cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
    sig: ty::PolyFnSig<'tcx>,
    extra_args: &[Ty<'tcx>],
    caller_location: Option<Ty<'tcx>>,
    fn_def_id: Option<DefId>,
    // FIXME(eddyb) replace this with something typed, like an `enum`.
    force_thin_self_ptr: bool,
) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> {
    let sig = cx.tcx.normalize_erasing_late_bound_regions(cx.param_env, sig);

    let conv = conv_from_spec_abi(cx.tcx(), sig.abi);

    let mut inputs = sig.inputs();
    let extra_args = if sig.abi == RustCall {
        assert!(!sig.c_variadic && extra_args.is_empty());

        if let Some(input) = sig.inputs().last() {
            if let ty::Tuple(tupled_arguments) = input.kind() {
                inputs = &sig.inputs()[0..sig.inputs().len() - 1];
                tupled_arguments
            } else {
                bug!(
                    "argument to function with \"rust-call\" ABI \
                        is not a tuple"
                );
            }
        } else {
            bug!(
                "argument to function with \"rust-call\" ABI \
                    is not a tuple"
            );
        }
    } else {
        assert!(sig.c_variadic || extra_args.is_empty());
        extra_args
    };

    let target = &cx.tcx.sess.target;
    let target_env_gnu_like = matches!(&target.env[..], "gnu" | "musl" | "uclibc");
    let win_x64_gnu = target.os == "windows" && target.arch == "x86_64" && target.env == "gnu";
    let linux_s390x_gnu_like =
        target.os == "linux" && target.arch == "s390x" && target_env_gnu_like;
    let linux_sparc64_gnu_like =
        target.os == "linux" && target.arch == "sparc64" && target_env_gnu_like;
    let linux_powerpc_gnu_like =
        target.os == "linux" && target.arch == "powerpc" && target_env_gnu_like;
    use SpecAbi::*;
    let rust_abi = matches!(sig.abi, RustIntrinsic | PlatformIntrinsic | Rust | RustCall);

    let arg_of = |ty: Ty<'tcx>, arg_idx: Option<usize>| -> Result<_, FnAbiError<'tcx>> {
        let span = tracing::debug_span!("arg_of");
        let _entered = span.enter();
        let is_return = arg_idx.is_none();

        let layout = cx.layout_of(ty)?;
        let layout = if force_thin_self_ptr && arg_idx == Some(0) {
            // Don't pass the vtable, it's not an argument of the virtual fn.
            // Instead, pass just the data pointer, but give it the type `*const/mut dyn Trait`
            // or `&/&mut dyn Trait` because this is special-cased elsewhere in codegen
            make_thin_self_ptr(cx, layout)
        } else {
            layout
        };

        let mut arg = ArgAbi::new(cx, layout, |layout, scalar, offset| {
            let mut attrs = ArgAttributes::new();
            adjust_for_rust_scalar(*cx, &mut attrs, scalar, *layout, offset, is_return);
            attrs
        });

        if arg.layout.is_zst() {
            // For some forsaken reason, x86_64-pc-windows-gnu
            // doesn't ignore zero-sized struct arguments.
            // The same is true for {s390x,sparc64,powerpc}-unknown-linux-{gnu,musl,uclibc}.
            if is_return
                || rust_abi
                || (!win_x64_gnu
                    && !linux_s390x_gnu_like
                    && !linux_sparc64_gnu_like
                    && !linux_powerpc_gnu_like)
            {
                arg.mode = PassMode::Ignore;
            }
        }

        Ok(arg)
    };

    let mut fn_abi = FnAbi {
        ret: arg_of(sig.output(), None)?,
        args: inputs
            .iter()
            .copied()
            .chain(extra_args.iter().copied())
            .chain(caller_location)
            .enumerate()
            .map(|(i, ty)| arg_of(ty, Some(i)))
            .collect::<Result<_, _>>()?,
        c_variadic: sig.c_variadic,
        fixed_count: inputs.len() as u32,
        conv,
        can_unwind: fn_can_unwind(cx.tcx(), fn_def_id, sig.abi),
    };
    fn_abi_adjust_for_abi(cx, &mut fn_abi, sig.abi, fn_def_id)?;
    debug!("fn_abi_new_uncached = {:?}", fn_abi);
    Ok(cx.tcx.arena.alloc(fn_abi))
}

#[tracing::instrument(level = "trace", skip(cx))]
fn fn_abi_adjust_for_abi<'tcx>(
    cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
    fn_abi: &mut FnAbi<'tcx, Ty<'tcx>>,
    abi: SpecAbi,
    fn_def_id: Option<DefId>,
) -> Result<(), FnAbiError<'tcx>> {
    if abi == SpecAbi::Unadjusted {
        return Ok(());
    }

    if abi == SpecAbi::Rust
        || abi == SpecAbi::RustCall
        || abi == SpecAbi::RustIntrinsic
        || abi == SpecAbi::PlatformIntrinsic
    {
        // Look up the deduced parameter attributes for this function, if we have its def ID and
        // we're optimizing in non-incremental mode. We'll tag its parameters with those attributes
        // as appropriate.
        let deduced_param_attrs = if cx.tcx.sess.opts.optimize != OptLevel::No
            && cx.tcx.sess.opts.incremental.is_none()
        {
            fn_def_id.map(|fn_def_id| cx.tcx.deduced_param_attrs(fn_def_id)).unwrap_or_default()
        } else {
            &[]
        };

        let fixup = |arg: &mut ArgAbi<'tcx, Ty<'tcx>>, arg_idx: Option<usize>| {
            if arg.is_ignore() {
                return;
            }

            match arg.layout.abi {
                Abi::Aggregate { .. } => {}

                // This is a fun case! The gist of what this is doing is
                // that we want callers and callees to always agree on the
                // ABI of how they pass SIMD arguments. If we were to *not*
                // make these arguments indirect then they'd be immediates
                // in LLVM, which means that they'd used whatever the
                // appropriate ABI is for the callee and the caller. That
                // means, for example, if the caller doesn't have AVX
                // enabled but the callee does, then passing an AVX argument
                // across this boundary would cause corrupt data to show up.
                //
                // This problem is fixed by unconditionally passing SIMD
                // arguments through memory between callers and callees
                // which should get them all to agree on ABI regardless of
                // target feature sets. Some more information about this
                // issue can be found in #44367.
                //
                // Note that the platform intrinsic ABI is exempt here as
                // that's how we connect up to LLVM and it's unstable
                // anyway, we control all calls to it in libstd.
                Abi::Vector { .. }
                    if abi != SpecAbi::PlatformIntrinsic
                        && cx.tcx.sess.target.simd_types_indirect =>
                {
                    arg.make_indirect();
                    return;
                }

                _ => return,
            }

            let size = arg.layout.size;
            if arg.layout.is_unsized() || size > Pointer.size(cx) {
                arg.make_indirect();
            } else {
                // We want to pass small aggregates as immediates, but using
                // a LLVM aggregate type for this leads to bad optimizations,
                // so we pick an appropriately sized integer type instead.
                arg.cast_to(Reg { kind: RegKind::Integer, size });
            }

            // If we deduced that this parameter was read-only, add that to the attribute list now.
            //
            // The `readonly` parameter only applies to pointers, so we can only do this if the
            // argument was passed indirectly. (If the argument is passed directly, it's an SSA
            // value, so it's implicitly immutable.)
            if let (Some(arg_idx), &mut PassMode::Indirect { ref mut attrs, .. }) =
                (arg_idx, &mut arg.mode)
            {
                // The `deduced_param_attrs` list could be empty if this is a type of function
                // we can't deduce any parameters for, so make sure the argument index is in
                // bounds.
                if let Some(deduced_param_attrs) = deduced_param_attrs.get(arg_idx) {
                    if deduced_param_attrs.read_only {
                        attrs.regular.insert(ArgAttribute::ReadOnly);
                        debug!("added deduced read-only attribute");
                    }
                }
            }
        };

        fixup(&mut fn_abi.ret, None);
        for (arg_idx, arg) in fn_abi.args.iter_mut().enumerate() {
            fixup(arg, Some(arg_idx));
        }
    } else {
        fn_abi.adjust_for_foreign_abi(cx, abi)?;
    }

    Ok(())
}

#[tracing::instrument(level = "debug", skip(cx))]
fn make_thin_self_ptr<'tcx>(
    cx: &(impl HasTyCtxt<'tcx> + HasParamEnv<'tcx>),
    layout: TyAndLayout<'tcx>,
) -> TyAndLayout<'tcx> {
    let tcx = cx.tcx();
    let fat_pointer_ty = if layout.is_unsized() {
        // unsized `self` is passed as a pointer to `self`
        // FIXME (mikeyhew) change this to use &own if it is ever added to the language
        tcx.mk_mut_ptr(layout.ty)
    } else {
        match layout.abi {
            Abi::ScalarPair(..) | Abi::Scalar(..) => (),
            _ => bug!("receiver type has unsupported layout: {:?}", layout),
        }

        // In the case of Rc<Self>, we need to explicitly pass a *mut RcBox<Self>
        // with a Scalar (not ScalarPair) ABI. This is a hack that is understood
        // elsewhere in the compiler as a method on a `dyn Trait`.
        // To get the type `*mut RcBox<Self>`, we just keep unwrapping newtypes until we
        // get a built-in pointer type
        let mut fat_pointer_layout = layout;
        'descend_newtypes: while !fat_pointer_layout.ty.is_unsafe_ptr()
            && !fat_pointer_layout.ty.is_region_ptr()
        {
            for i in 0..fat_pointer_layout.fields.count() {
                let field_layout = fat_pointer_layout.field(cx, i);

                if !field_layout.is_zst() {
                    fat_pointer_layout = field_layout;
                    continue 'descend_newtypes;
                }
            }

            bug!("receiver has no non-zero-sized fields {:?}", fat_pointer_layout);
        }

        fat_pointer_layout.ty
    };

    // we now have a type like `*mut RcBox<dyn Trait>`
    // change its layout to that of `*mut ()`, a thin pointer, but keep the same type
    // this is understood as a special case elsewhere in the compiler
    let unit_ptr_ty = tcx.mk_mut_ptr(tcx.mk_unit());

    TyAndLayout {
        ty: fat_pointer_ty,

        // NOTE(eddyb) using an empty `ParamEnv`, and `unwrap`-ing the `Result`
        // should always work because the type is always `*mut ()`.
        ..tcx.layout_of(ty::ParamEnv::reveal_all().and(unit_ptr_ty)).unwrap()
    }
}