1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
// Coherence phase
//
// The job of the coherence phase of typechecking is to ensure that
// each trait has at most one implementation for each type. This is
// done by the orphan and overlap modules. Then we build up various
// mappings. That mapping code resides here.

use rustc_errors::{error_code, struct_span_err};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::{self, TyCtxt, TypeVisitable};
use rustc_span::sym;
use rustc_trait_selection::traits;

mod builtin;
mod inherent_impls;
mod inherent_impls_overlap;
mod orphan;
mod unsafety;

fn check_impl(tcx: TyCtxt<'_>, impl_def_id: LocalDefId, trait_ref: ty::TraitRef<'_>) {
    debug!(
        "(checking implementation) adding impl for trait '{:?}', item '{}'",
        trait_ref,
        tcx.def_path_str(impl_def_id.to_def_id())
    );

    // Skip impls where one of the self type is an error type.
    // This occurs with e.g., resolve failures (#30589).
    if trait_ref.references_error() {
        return;
    }

    enforce_trait_manually_implementable(tcx, impl_def_id, trait_ref.def_id);
    enforce_empty_impls_for_marker_traits(tcx, impl_def_id, trait_ref.def_id);
}

fn enforce_trait_manually_implementable(
    tcx: TyCtxt<'_>,
    impl_def_id: LocalDefId,
    trait_def_id: DefId,
) {
    let impl_header_span = tcx.def_span(impl_def_id);

    // Disallow *all* explicit impls of traits marked `#[rustc_deny_explicit_impl]`
    if tcx.has_attr(trait_def_id, sym::rustc_deny_explicit_impl) {
        let trait_name = tcx.item_name(trait_def_id);
        let mut err = struct_span_err!(
            tcx.sess,
            impl_header_span,
            E0322,
            "explicit impls for the `{trait_name}` trait are not permitted"
        );
        err.span_label(impl_header_span, format!("impl of `{trait_name}` not allowed"));

        // Maintain explicit error code for `Unsize`, since it has a useful
        // explanation about using `CoerceUnsized` instead.
        if Some(trait_def_id) == tcx.lang_items().unsize_trait() {
            err.code(error_code!(E0328));
        }

        err.emit();
        return;
    }

    if let ty::trait_def::TraitSpecializationKind::AlwaysApplicable =
        tcx.trait_def(trait_def_id).specialization_kind
    {
        if !tcx.features().specialization && !tcx.features().min_specialization {
            tcx.sess
                .struct_span_err(
                    impl_header_span,
                    "implementing `rustc_specialization_trait` traits is unstable",
                )
                .help("add `#![feature(min_specialization)]` to the crate attributes to enable")
                .emit();
            return;
        }
    }
}

/// We allow impls of marker traits to overlap, so they can't override impls
/// as that could make it ambiguous which associated item to use.
fn enforce_empty_impls_for_marker_traits(
    tcx: TyCtxt<'_>,
    impl_def_id: LocalDefId,
    trait_def_id: DefId,
) {
    if !tcx.trait_def(trait_def_id).is_marker {
        return;
    }

    if tcx.associated_item_def_ids(trait_def_id).is_empty() {
        return;
    }

    struct_span_err!(
        tcx.sess,
        tcx.def_span(impl_def_id),
        E0715,
        "impls for marker traits cannot contain items"
    )
    .emit();
}

pub fn provide(providers: &mut Providers) {
    use self::builtin::coerce_unsized_info;
    use self::inherent_impls::{crate_incoherent_impls, crate_inherent_impls, inherent_impls};
    use self::inherent_impls_overlap::crate_inherent_impls_overlap_check;
    use self::orphan::orphan_check_impl;

    *providers = Providers {
        coherent_trait,
        crate_inherent_impls,
        crate_incoherent_impls,
        inherent_impls,
        crate_inherent_impls_overlap_check,
        coerce_unsized_info,
        orphan_check_impl,
        ..*providers
    };
}

fn coherent_trait(tcx: TyCtxt<'_>, def_id: DefId) {
    // Trigger building the specialization graph for the trait. This will detect and report any
    // overlap errors.
    tcx.ensure().specialization_graph_of(def_id);

    let impls = tcx.hir().trait_impls(def_id);
    for &impl_def_id in impls {
        let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();

        check_impl(tcx, impl_def_id, trait_ref);
        check_object_overlap(tcx, impl_def_id, trait_ref);

        tcx.sess.time("unsafety_checking", || unsafety::check_item(tcx, impl_def_id));
        tcx.sess.time("orphan_checking", || tcx.ensure().orphan_check_impl(impl_def_id));
    }

    builtin::check_trait(tcx, def_id);
}

/// Checks whether an impl overlaps with the automatic `impl Trait for dyn Trait`.
fn check_object_overlap<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_def_id: LocalDefId,
    trait_ref: ty::TraitRef<'tcx>,
) {
    let trait_def_id = trait_ref.def_id;

    if trait_ref.references_error() {
        debug!("coherence: skipping impl {:?} with error {:?}", impl_def_id, trait_ref);
        return;
    }

    // check for overlap with the automatic `impl Trait for dyn Trait`
    if let ty::Dynamic(data, ..) = trait_ref.self_ty().kind() {
        // This is something like impl Trait1 for Trait2. Illegal
        // if Trait1 is a supertrait of Trait2 or Trait2 is not object safe.

        let component_def_ids = data.iter().flat_map(|predicate| {
            match predicate.skip_binder() {
                ty::ExistentialPredicate::Trait(tr) => Some(tr.def_id),
                ty::ExistentialPredicate::AutoTrait(def_id) => Some(def_id),
                // An associated type projection necessarily comes with
                // an additional `Trait` requirement.
                ty::ExistentialPredicate::Projection(..) => None,
            }
        });

        for component_def_id in component_def_ids {
            if !tcx.is_object_safe(component_def_id) {
                // Without the 'object_safe_for_dispatch' feature this is an error
                // which will be reported by wfcheck.  Ignore it here.
                // This is tested by `coherence-impl-trait-for-trait-object-safe.rs`.
                // With the feature enabled, the trait is not implemented automatically,
                // so this is valid.
            } else {
                let mut supertrait_def_ids = traits::supertrait_def_ids(tcx, component_def_id);
                if supertrait_def_ids.any(|d| d == trait_def_id) {
                    let span = tcx.def_span(impl_def_id);
                    struct_span_err!(
                        tcx.sess,
                        span,
                        E0371,
                        "the object type `{}` automatically implements the trait `{}`",
                        trait_ref.self_ty(),
                        tcx.def_path_str(trait_def_id)
                    )
                    .span_label(
                        span,
                        format!(
                            "`{}` automatically implements trait `{}`",
                            trait_ref.self_ty(),
                            tcx.def_path_str(trait_def_id)
                        ),
                    )
                    .emit();
                }
            }
        }
    }
}