1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
use rustc_infer::infer::outlives::components::{push_outlives_components, Component};
use rustc_middle::ty::subst::{GenericArg, GenericArgKind};
use rustc_middle::ty::{self, Region, Ty, TyCtxt};
use rustc_span::Span;
use smallvec::smallvec;
use std::collections::BTreeMap;
/// Tracks the `T: 'a` or `'a: 'a` predicates that we have inferred
/// must be added to the struct header.
pub(crate) type RequiredPredicates<'tcx> =
BTreeMap<ty::OutlivesPredicate<GenericArg<'tcx>, ty::Region<'tcx>>, Span>;
/// Given a requirement `T: 'a` or `'b: 'a`, deduce the
/// outlives_component and add it to `required_predicates`
pub(crate) fn insert_outlives_predicate<'tcx>(
tcx: TyCtxt<'tcx>,
kind: GenericArg<'tcx>,
outlived_region: Region<'tcx>,
span: Span,
required_predicates: &mut RequiredPredicates<'tcx>,
) {
// If the `'a` region is bound within the field type itself, we
// don't want to propagate this constraint to the header.
if !is_free_region(outlived_region) {
return;
}
match kind.unpack() {
GenericArgKind::Type(ty) => {
// `T: 'outlived_region` for some type `T`
// But T could be a lot of things:
// e.g., if `T = &'b u32`, then `'b: 'outlived_region` is
// what we want to add.
//
// Or if within `struct Foo<U>` you had `T = Vec<U>`, then
// we would want to add `U: 'outlived_region`
let mut components = smallvec![];
push_outlives_components(tcx, ty, &mut components);
for component in components {
match component {
Component::Region(r) => {
// This would arise from something like:
//
// ```
// struct Foo<'a, 'b> {
// x: &'a &'b u32
// }
// ```
//
// Here `outlived_region = 'a` and `kind = &'b
// u32`. Decomposing `&'b u32` into
// components would yield `'b`, and we add the
// where clause that `'b: 'a`.
insert_outlives_predicate(
tcx,
r.into(),
outlived_region,
span,
required_predicates,
);
}
Component::Param(param_ty) => {
// param_ty: ty::ParamTy
// This would arise from something like:
//
// ```
// struct Foo<'a, U> {
// x: &'a Vec<U>
// }
// ```
//
// Here `outlived_region = 'a` and `kind =
// Vec<U>`. Decomposing `Vec<U>` into
// components would yield `U`, and we add the
// where clause that `U: 'a`.
let ty: Ty<'tcx> = param_ty.to_ty(tcx);
required_predicates
.entry(ty::OutlivesPredicate(ty.into(), outlived_region))
.or_insert(span);
}
Component::Projection(proj_ty) => {
// This would arise from something like:
//
// ```
// struct Foo<'a, T: Iterator> {
// x: &'a <T as Iterator>::Item
// }
// ```
//
// Here we want to add an explicit `where <T as Iterator>::Item: 'a`.
let ty: Ty<'tcx> = tcx.mk_projection(proj_ty.def_id, proj_ty.substs);
required_predicates
.entry(ty::OutlivesPredicate(ty.into(), outlived_region))
.or_insert(span);
}
Component::Opaque(def_id, substs) => {
// This would arise from something like:
//
// ```rust
// type Opaque<T> = impl Sized;
// fn defining<T>() -> Opaque<T> {}
// struct Ss<'a, T>(&'a Opaque<T>);
// ```
//
// Here we want to have an implied bound `Opaque<T>: 'a`
let ty = tcx.mk_opaque(def_id, substs);
required_predicates
.entry(ty::OutlivesPredicate(ty.into(), outlived_region))
.or_insert(span);
}
Component::EscapingProjection(_) => {
// As above, but the projection involves
// late-bound regions. Therefore, the WF
// requirement is not checked in type definition
// but at fn call site, so ignore it.
//
// ```
// struct Foo<'a, T: Iterator> {
// x: for<'b> fn(<&'b T as Iterator>::Item)
// // ^^^^^^^^^^^^^^^^^^^^^^^^^
// }
// ```
//
// Since `'b` is not in scope on `Foo`, can't
// do anything here, ignore it.
}
Component::UnresolvedInferenceVariable(_) => bug!("not using infcx"),
}
}
}
GenericArgKind::Lifetime(r) => {
if !is_free_region(r) {
return;
}
required_predicates.entry(ty::OutlivesPredicate(kind, outlived_region)).or_insert(span);
}
GenericArgKind::Const(_) => {
// Generic consts don't impose any constraints.
}
}
}
fn is_free_region(region: Region<'_>) -> bool {
// First, screen for regions that might appear in a type header.
match *region {
// These correspond to `T: 'a` relationships:
//
// struct Foo<'a, T> {
// field: &'a T, // this would generate a ReEarlyBound referencing `'a`
// }
//
// We care about these, so fall through.
ty::ReEarlyBound(_) => true,
// These correspond to `T: 'static` relationships which can be
// rather surprising.
//
// struct Foo<'a, T> {
// field: &'static T, // this would generate a ReStatic
// }
ty::ReStatic => false,
// Late-bound regions can appear in `fn` types:
//
// struct Foo<T> {
// field: for<'b> fn(&'b T) // e.g., 'b here
// }
//
// The type above might generate a `T: 'b` bound, but we can
// ignore it. We can't put it on the struct header anyway.
ty::ReLateBound(..) => false,
// These regions don't appear in types from type declarations:
ty::ReErased | ty::ReVar(..) | ty::RePlaceholder(..) | ty::ReFree(..) => {
bug!("unexpected region in outlives inference: {:?}", region);
}
}
}