1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
#![feature(associated_type_bounds)]
#![feature(box_patterns)]
#![feature(if_let_guard)]
#![feature(int_roundings)]
#![feature(let_chains)]
#![feature(never_type)]
#![feature(once_cell)]
#![feature(strict_provenance)]
#![feature(try_blocks)]
#![recursion_limit = "256"]
#![allow(rustc::potential_query_instability)]

//! This crate contains codegen code that is used by all codegen backends (LLVM and others).
//! The backend-agnostic functions of this crate use functions defined in various traits that
//! have to be implemented by each backends.

#[macro_use]
extern crate rustc_macros;
#[macro_use]
extern crate tracing;
#[macro_use]
extern crate rustc_middle;

use rustc_ast as ast;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::sync::Lrc;
use rustc_hir::def_id::CrateNum;
use rustc_middle::dep_graph::WorkProduct;
use rustc_middle::middle::dependency_format::Dependencies;
use rustc_middle::middle::exported_symbols::SymbolExportKind;
use rustc_middle::ty::query::{ExternProviders, Providers};
use rustc_serialize::opaque::{MemDecoder, MemEncoder};
use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
use rustc_session::config::{CrateType, OutputFilenames, OutputType, RUST_CGU_EXT};
use rustc_session::cstore::{self, CrateSource};
use rustc_session::utils::NativeLibKind;
use rustc_span::symbol::Symbol;
use rustc_span::DebuggerVisualizerFile;
use std::collections::BTreeSet;
use std::path::{Path, PathBuf};

pub mod back;
pub mod base;
pub mod codegen_attrs;
pub mod common;
pub mod coverageinfo;
pub mod debuginfo;
pub mod errors;
pub mod glue;
pub mod meth;
pub mod mir;
pub mod mono_item;
pub mod target_features;
pub mod traits;

pub struct ModuleCodegen<M> {
    /// The name of the module. When the crate may be saved between
    /// compilations, incremental compilation requires that name be
    /// unique amongst **all** crates. Therefore, it should contain
    /// something unique to this crate (e.g., a module path) as well
    /// as the crate name and disambiguator.
    /// We currently generate these names via CodegenUnit::build_cgu_name().
    pub name: String,
    pub module_llvm: M,
    pub kind: ModuleKind,
}

impl<M> ModuleCodegen<M> {
    pub fn into_compiled_module(
        self,
        emit_obj: bool,
        emit_dwarf_obj: bool,
        emit_bc: bool,
        outputs: &OutputFilenames,
    ) -> CompiledModule {
        let object = emit_obj.then(|| outputs.temp_path(OutputType::Object, Some(&self.name)));
        let dwarf_object = emit_dwarf_obj.then(|| outputs.temp_path_dwo(Some(&self.name)));
        let bytecode = emit_bc.then(|| outputs.temp_path(OutputType::Bitcode, Some(&self.name)));

        CompiledModule { name: self.name.clone(), kind: self.kind, object, dwarf_object, bytecode }
    }
}

#[derive(Debug, Encodable, Decodable)]
pub struct CompiledModule {
    pub name: String,
    pub kind: ModuleKind,
    pub object: Option<PathBuf>,
    pub dwarf_object: Option<PathBuf>,
    pub bytecode: Option<PathBuf>,
}

pub struct CachedModuleCodegen {
    pub name: String,
    pub source: WorkProduct,
}

#[derive(Copy, Clone, Debug, PartialEq, Encodable, Decodable)]
pub enum ModuleKind {
    Regular,
    Metadata,
    Allocator,
}

bitflags::bitflags! {
    pub struct MemFlags: u8 {
        const VOLATILE = 1 << 0;
        const NONTEMPORAL = 1 << 1;
        const UNALIGNED = 1 << 2;
    }
}

#[derive(Clone, Debug, Encodable, Decodable, HashStable)]
pub struct NativeLib {
    pub kind: NativeLibKind,
    pub name: Option<Symbol>,
    pub filename: Option<Symbol>,
    pub cfg: Option<ast::MetaItem>,
    pub verbatim: bool,
    pub dll_imports: Vec<cstore::DllImport>,
}

impl From<&cstore::NativeLib> for NativeLib {
    fn from(lib: &cstore::NativeLib) -> Self {
        NativeLib {
            kind: lib.kind,
            filename: lib.filename,
            name: lib.name,
            cfg: lib.cfg.clone(),
            verbatim: lib.verbatim.unwrap_or(false),
            dll_imports: lib.dll_imports.clone(),
        }
    }
}

/// Misc info we load from metadata to persist beyond the tcx.
///
/// Note: though `CrateNum` is only meaningful within the same tcx, information within `CrateInfo`
/// is self-contained. `CrateNum` can be viewed as a unique identifier within a `CrateInfo`, where
/// `used_crate_source` contains all `CrateSource` of the dependents, and maintains a mapping from
/// identifiers (`CrateNum`) to `CrateSource`. The other fields map `CrateNum` to the crate's own
/// additional properties, so that effectively we can retrieve each dependent crate's `CrateSource`
/// and the corresponding properties without referencing information outside of a `CrateInfo`.
#[derive(Debug, Encodable, Decodable)]
pub struct CrateInfo {
    pub target_cpu: String,
    pub exported_symbols: FxHashMap<CrateType, Vec<String>>,
    pub linked_symbols: FxHashMap<CrateType, Vec<(String, SymbolExportKind)>>,
    pub local_crate_name: Symbol,
    pub compiler_builtins: Option<CrateNum>,
    pub profiler_runtime: Option<CrateNum>,
    pub is_no_builtins: FxHashSet<CrateNum>,
    pub native_libraries: FxHashMap<CrateNum, Vec<NativeLib>>,
    pub crate_name: FxHashMap<CrateNum, Symbol>,
    pub used_libraries: Vec<NativeLib>,
    pub used_crate_source: FxHashMap<CrateNum, Lrc<CrateSource>>,
    pub used_crates: Vec<CrateNum>,
    pub dependency_formats: Lrc<Dependencies>,
    pub windows_subsystem: Option<String>,
    pub natvis_debugger_visualizers: BTreeSet<DebuggerVisualizerFile>,
}

#[derive(Encodable, Decodable)]
pub struct CodegenResults {
    pub modules: Vec<CompiledModule>,
    pub allocator_module: Option<CompiledModule>,
    pub metadata_module: Option<CompiledModule>,
    pub metadata: rustc_metadata::EncodedMetadata,
    pub crate_info: CrateInfo,
}

pub enum CodegenErrors<'a> {
    WrongFileType,
    EmptyVersionNumber,
    EncodingVersionMismatch { version_array: String, rlink_version: u32 },
    RustcVersionMismatch { rustc_version: String, current_version: &'a str },
}

pub fn provide(providers: &mut Providers) {
    crate::back::symbol_export::provide(providers);
    crate::base::provide(providers);
    crate::target_features::provide(providers);
    crate::codegen_attrs::provide(providers);
}

pub fn provide_extern(providers: &mut ExternProviders) {
    crate::back::symbol_export::provide_extern(providers);
}

/// Checks if the given filename ends with the `.rcgu.o` extension that `rustc`
/// uses for the object files it generates.
pub fn looks_like_rust_object_file(filename: &str) -> bool {
    let path = Path::new(filename);
    let ext = path.extension().and_then(|s| s.to_str());
    if ext != Some(OutputType::Object.extension()) {
        // The file name does not end with ".o", so it can't be an object file.
        return false;
    }

    // Strip the ".o" at the end
    let ext2 = path.file_stem().and_then(|s| Path::new(s).extension()).and_then(|s| s.to_str());

    // Check if the "inner" extension
    ext2 == Some(RUST_CGU_EXT)
}

const RLINK_VERSION: u32 = 1;
const RLINK_MAGIC: &[u8] = b"rustlink";

const RUSTC_VERSION: Option<&str> = option_env!("CFG_VERSION");

impl CodegenResults {
    pub fn serialize_rlink(codegen_results: &CodegenResults) -> Vec<u8> {
        let mut encoder = MemEncoder::new();
        encoder.emit_raw_bytes(RLINK_MAGIC);
        // `emit_raw_bytes` is used to make sure that the version representation does not depend on
        // Encoder's inner representation of `u32`.
        encoder.emit_raw_bytes(&RLINK_VERSION.to_be_bytes());
        encoder.emit_str(RUSTC_VERSION.unwrap());
        Encodable::encode(codegen_results, &mut encoder);
        encoder.finish()
    }

    pub fn deserialize_rlink<'a>(data: Vec<u8>) -> Result<Self, CodegenErrors<'a>> {
        // The Decodable machinery is not used here because it panics if the input data is invalid
        // and because its internal representation may change.
        if !data.starts_with(RLINK_MAGIC) {
            return Err(CodegenErrors::WrongFileType);
        }
        let data = &data[RLINK_MAGIC.len()..];
        if data.len() < 4 {
            return Err(CodegenErrors::EmptyVersionNumber);
        }

        let mut version_array: [u8; 4] = Default::default();
        version_array.copy_from_slice(&data[..4]);
        if u32::from_be_bytes(version_array) != RLINK_VERSION {
            return Err(CodegenErrors::EncodingVersionMismatch {
                version_array: String::from_utf8_lossy(&version_array).to_string(),
                rlink_version: RLINK_VERSION,
            });
        }

        let mut decoder = MemDecoder::new(&data[4..], 0);
        let rustc_version = decoder.read_str();
        let current_version = RUSTC_VERSION.unwrap();
        if rustc_version != current_version {
            return Err(CodegenErrors::RustcVersionMismatch {
                rustc_version: rustc_version.to_string(),
                current_version,
            });
        }

        let codegen_results = CodegenResults::decode(&mut decoder);
        Ok(codegen_results)
    }
}