1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
//! Propagates constants for early reporting of statically known
//! assertion failures

use crate::const_prop::CanConstProp;
use crate::const_prop::ConstPropMachine;
use crate::const_prop::ConstPropMode;
use crate::MirLint;
use rustc_const_eval::const_eval::ConstEvalErr;
use rustc_const_eval::interpret::Immediate;
use rustc_const_eval::interpret::{
    self, InterpCx, InterpResult, LocalState, LocalValue, MemoryKind, OpTy, Scalar, StackPopCleanup,
};
use rustc_hir::def::DefKind;
use rustc_hir::HirId;
use rustc_index::bit_set::BitSet;
use rustc_index::vec::IndexVec;
use rustc_middle::mir::visit::Visitor;
use rustc_middle::mir::{
    self, AssertKind, BinOp, Body, Constant, ConstantKind, Local, LocalDecl, Location, Operand,
    Place, Rvalue, SourceInfo, SourceScope, SourceScopeData, Statement, StatementKind, Terminator,
    TerminatorKind, UnOp, RETURN_PLACE,
};
use rustc_middle::ty::layout::{LayoutError, LayoutOf, LayoutOfHelpers, TyAndLayout};
use rustc_middle::ty::InternalSubsts;
use rustc_middle::ty::{self, ConstInt, Instance, ParamEnv, ScalarInt, Ty, TyCtxt, TypeVisitable};
use rustc_session::lint;
use rustc_span::Span;
use rustc_target::abi::{HasDataLayout, Size, TargetDataLayout};
use rustc_trait_selection::traits;
use std::cell::Cell;

/// The maximum number of bytes that we'll allocate space for a local or the return value.
/// Needed for #66397, because otherwise we eval into large places and that can cause OOM or just
/// Severely regress performance.
const MAX_ALLOC_LIMIT: u64 = 1024;
pub struct ConstProp;

impl<'tcx> MirLint<'tcx> for ConstProp {
    fn run_lint(&self, tcx: TyCtxt<'tcx>, body: &Body<'tcx>) {
        // will be evaluated by miri and produce its errors there
        if body.source.promoted.is_some() {
            return;
        }

        let def_id = body.source.def_id().expect_local();
        let is_fn_like = tcx.def_kind(def_id).is_fn_like();
        let is_assoc_const = tcx.def_kind(def_id) == DefKind::AssocConst;

        // Only run const prop on functions, methods, closures and associated constants
        if !is_fn_like && !is_assoc_const {
            // skip anon_const/statics/consts because they'll be evaluated by miri anyway
            trace!("ConstProp skipped for {:?}", def_id);
            return;
        }

        let is_generator = tcx.type_of(def_id.to_def_id()).is_generator();
        // FIXME(welseywiser) const prop doesn't work on generators because of query cycles
        // computing their layout.
        if is_generator {
            trace!("ConstProp skipped for generator {:?}", def_id);
            return;
        }

        // Check if it's even possible to satisfy the 'where' clauses
        // for this item.
        // This branch will never be taken for any normal function.
        // However, it's possible to `#!feature(trivial_bounds)]` to write
        // a function with impossible to satisfy clauses, e.g.:
        // `fn foo() where String: Copy {}`
        //
        // We don't usually need to worry about this kind of case,
        // since we would get a compilation error if the user tried
        // to call it. However, since we can do const propagation
        // even without any calls to the function, we need to make
        // sure that it even makes sense to try to evaluate the body.
        // If there are unsatisfiable where clauses, then all bets are
        // off, and we just give up.
        //
        // We manually filter the predicates, skipping anything that's not
        // "global". We are in a potentially generic context
        // (e.g. we are evaluating a function without substituting generic
        // parameters, so this filtering serves two purposes:
        //
        // 1. We skip evaluating any predicates that we would
        // never be able prove are unsatisfiable (e.g. `<T as Foo>`
        // 2. We avoid trying to normalize predicates involving generic
        // parameters (e.g. `<T as Foo>::MyItem`). This can confuse
        // the normalization code (leading to cycle errors), since
        // it's usually never invoked in this way.
        let predicates = tcx
            .predicates_of(def_id.to_def_id())
            .predicates
            .iter()
            .filter_map(|(p, _)| if p.is_global() { Some(*p) } else { None });
        if traits::impossible_predicates(
            tcx,
            traits::elaborate_predicates(tcx, predicates).map(|o| o.predicate).collect(),
        ) {
            trace!("ConstProp skipped for {:?}: found unsatisfiable predicates", def_id);
            return;
        }

        trace!("ConstProp starting for {:?}", def_id);

        let dummy_body = &Body::new(
            body.source,
            (*body.basic_blocks).clone(),
            body.source_scopes.clone(),
            body.local_decls.clone(),
            Default::default(),
            body.arg_count,
            Default::default(),
            body.span,
            body.generator_kind(),
            body.tainted_by_errors,
        );

        // FIXME(oli-obk, eddyb) Optimize locals (or even local paths) to hold
        // constants, instead of just checking for const-folding succeeding.
        // That would require a uniform one-def no-mutation analysis
        // and RPO (or recursing when needing the value of a local).
        let mut optimization_finder = ConstPropagator::new(body, dummy_body, tcx);
        optimization_finder.visit_body(body);

        trace!("ConstProp done for {:?}", def_id);
    }
}

/// Finds optimization opportunities on the MIR.
struct ConstPropagator<'mir, 'tcx> {
    ecx: InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>,
    tcx: TyCtxt<'tcx>,
    param_env: ParamEnv<'tcx>,
    source_scopes: &'mir IndexVec<SourceScope, SourceScopeData<'tcx>>,
    local_decls: &'mir IndexVec<Local, LocalDecl<'tcx>>,
    // Because we have `MutVisitor` we can't obtain the `SourceInfo` from a `Location`. So we store
    // the last known `SourceInfo` here and just keep revisiting it.
    source_info: Option<SourceInfo>,
}

impl<'tcx> LayoutOfHelpers<'tcx> for ConstPropagator<'_, 'tcx> {
    type LayoutOfResult = Result<TyAndLayout<'tcx>, LayoutError<'tcx>>;

    #[inline]
    fn handle_layout_err(&self, err: LayoutError<'tcx>, _: Span, _: Ty<'tcx>) -> LayoutError<'tcx> {
        err
    }
}

impl HasDataLayout for ConstPropagator<'_, '_> {
    #[inline]
    fn data_layout(&self) -> &TargetDataLayout {
        &self.tcx.data_layout
    }
}

impl<'tcx> ty::layout::HasTyCtxt<'tcx> for ConstPropagator<'_, 'tcx> {
    #[inline]
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }
}

impl<'tcx> ty::layout::HasParamEnv<'tcx> for ConstPropagator<'_, 'tcx> {
    #[inline]
    fn param_env(&self) -> ty::ParamEnv<'tcx> {
        self.param_env
    }
}

impl<'mir, 'tcx> ConstPropagator<'mir, 'tcx> {
    fn new(
        body: &Body<'tcx>,
        dummy_body: &'mir Body<'tcx>,
        tcx: TyCtxt<'tcx>,
    ) -> ConstPropagator<'mir, 'tcx> {
        let def_id = body.source.def_id();
        let substs = &InternalSubsts::identity_for_item(tcx, def_id);
        let param_env = tcx.param_env_reveal_all_normalized(def_id);

        let can_const_prop = CanConstProp::check(tcx, param_env, body);
        let mut only_propagate_inside_block_locals = BitSet::new_empty(can_const_prop.len());
        for (l, mode) in can_const_prop.iter_enumerated() {
            if *mode == ConstPropMode::OnlyInsideOwnBlock {
                only_propagate_inside_block_locals.insert(l);
            }
        }
        let mut ecx = InterpCx::new(
            tcx,
            tcx.def_span(def_id),
            param_env,
            ConstPropMachine::new(only_propagate_inside_block_locals, can_const_prop),
        );

        let ret_layout = ecx
            .layout_of(body.bound_return_ty().subst(tcx, substs))
            .ok()
            // Don't bother allocating memory for large values.
            // I don't know how return types can seem to be unsized but this happens in the
            // `type/type-unsatisfiable.rs` test.
            .filter(|ret_layout| {
                !ret_layout.is_unsized() && ret_layout.size < Size::from_bytes(MAX_ALLOC_LIMIT)
            })
            .unwrap_or_else(|| ecx.layout_of(tcx.types.unit).unwrap());

        let ret = ecx
            .allocate(ret_layout, MemoryKind::Stack)
            .expect("couldn't perform small allocation")
            .into();

        ecx.push_stack_frame(
            Instance::new(def_id, substs),
            dummy_body,
            &ret,
            StackPopCleanup::Root { cleanup: false },
        )
        .expect("failed to push initial stack frame");

        ConstPropagator {
            ecx,
            tcx,
            param_env,
            source_scopes: &dummy_body.source_scopes,
            local_decls: &dummy_body.local_decls,
            source_info: None,
        }
    }

    fn get_const(&self, place: Place<'tcx>) -> Option<OpTy<'tcx>> {
        let op = match self.ecx.eval_place_to_op(place, None) {
            Ok(op) => {
                if matches!(*op, interpret::Operand::Immediate(Immediate::Uninit)) {
                    // Make sure nobody accidentally uses this value.
                    return None;
                }
                op
            }
            Err(e) => {
                trace!("get_const failed: {}", e);
                return None;
            }
        };

        // Try to read the local as an immediate so that if it is representable as a scalar, we can
        // handle it as such, but otherwise, just return the value as is.
        Some(match self.ecx.read_immediate_raw(&op) {
            Ok(Ok(imm)) => imm.into(),
            _ => op,
        })
    }

    /// Remove `local` from the pool of `Locals`. Allows writing to them,
    /// but not reading from them anymore.
    fn remove_const(ecx: &mut InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>, local: Local) {
        ecx.frame_mut().locals[local] = LocalState {
            value: LocalValue::Live(interpret::Operand::Immediate(interpret::Immediate::Uninit)),
            layout: Cell::new(None),
        };
    }

    fn lint_root(&self, source_info: SourceInfo) -> Option<HirId> {
        source_info.scope.lint_root(self.source_scopes)
    }

    fn use_ecx<F, T>(&mut self, source_info: SourceInfo, f: F) -> Option<T>
    where
        F: FnOnce(&mut Self) -> InterpResult<'tcx, T>,
    {
        // Overwrite the PC -- whatever the interpreter does to it does not make any sense anyway.
        self.ecx.frame_mut().loc = Err(source_info.span);
        match f(self) {
            Ok(val) => Some(val),
            Err(error) => {
                trace!("InterpCx operation failed: {:?}", error);
                // Some errors shouldn't come up because creating them causes
                // an allocation, which we should avoid. When that happens,
                // dedicated error variants should be introduced instead.
                assert!(
                    !error.kind().formatted_string(),
                    "const-prop encountered formatting error: {}",
                    error
                );
                None
            }
        }
    }

    /// Returns the value, if any, of evaluating `c`.
    fn eval_constant(&mut self, c: &Constant<'tcx>, source_info: SourceInfo) -> Option<OpTy<'tcx>> {
        // FIXME we need to revisit this for #67176
        if c.needs_subst() {
            return None;
        }

        match self.ecx.const_to_op(&c.literal, None) {
            Ok(op) => Some(op),
            Err(error) => {
                let tcx = self.ecx.tcx.at(c.span);
                let err = ConstEvalErr::new(&self.ecx, error, Some(c.span));
                if let Some(lint_root) = self.lint_root(source_info) {
                    let lint_only = match c.literal {
                        ConstantKind::Ty(ct) => ct.needs_subst(),
                        ConstantKind::Unevaluated(
                            mir::UnevaluatedConst { def: _, substs: _, promoted: Some(_) },
                            _,
                        ) => {
                            // Promoteds must lint and not error as the user didn't ask for them
                            true
                        }
                        ConstantKind::Unevaluated(..) | ConstantKind::Val(..) => c.needs_subst(),
                    };
                    if lint_only {
                        // Out of backwards compatibility we cannot report hard errors in unused
                        // generic functions using associated constants of the generic parameters.
                        err.report_as_lint(tcx, "erroneous constant used", lint_root, Some(c.span));
                    } else {
                        err.report_as_error(tcx, "erroneous constant used");
                    }
                } else {
                    err.report_as_error(tcx, "erroneous constant used");
                }
                None
            }
        }
    }

    /// Returns the value, if any, of evaluating `place`.
    fn eval_place(&mut self, place: Place<'tcx>, source_info: SourceInfo) -> Option<OpTy<'tcx>> {
        trace!("eval_place(place={:?})", place);
        self.use_ecx(source_info, |this| this.ecx.eval_place_to_op(place, None))
    }

    /// Returns the value, if any, of evaluating `op`. Calls upon `eval_constant`
    /// or `eval_place`, depending on the variant of `Operand` used.
    fn eval_operand(&mut self, op: &Operand<'tcx>, source_info: SourceInfo) -> Option<OpTy<'tcx>> {
        match *op {
            Operand::Constant(ref c) => self.eval_constant(c, source_info),
            Operand::Move(place) | Operand::Copy(place) => self.eval_place(place, source_info),
        }
    }

    fn report_assert_as_lint(
        &self,
        lint: &'static lint::Lint,
        source_info: SourceInfo,
        message: &'static str,
        panic: AssertKind<impl std::fmt::Debug>,
    ) {
        if let Some(lint_root) = self.lint_root(source_info) {
            self.tcx.struct_span_lint_hir(lint, lint_root, source_info.span, message, |lint| {
                lint.span_label(source_info.span, format!("{:?}", panic))
            });
        }
    }

    fn check_unary_op(
        &mut self,
        op: UnOp,
        arg: &Operand<'tcx>,
        source_info: SourceInfo,
    ) -> Option<()> {
        if let (val, true) = self.use_ecx(source_info, |this| {
            let val = this.ecx.read_immediate(&this.ecx.eval_operand(arg, None)?)?;
            let (_res, overflow, _ty) = this.ecx.overflowing_unary_op(op, &val)?;
            Ok((val, overflow))
        })? {
            // `AssertKind` only has an `OverflowNeg` variant, so make sure that is
            // appropriate to use.
            assert_eq!(op, UnOp::Neg, "Neg is the only UnOp that can overflow");
            self.report_assert_as_lint(
                lint::builtin::ARITHMETIC_OVERFLOW,
                source_info,
                "this arithmetic operation will overflow",
                AssertKind::OverflowNeg(val.to_const_int()),
            );
            return None;
        }

        Some(())
    }

    fn check_binary_op(
        &mut self,
        op: BinOp,
        left: &Operand<'tcx>,
        right: &Operand<'tcx>,
        source_info: SourceInfo,
    ) -> Option<()> {
        let r = self.use_ecx(source_info, |this| {
            this.ecx.read_immediate(&this.ecx.eval_operand(right, None)?)
        });
        let l = self.use_ecx(source_info, |this| {
            this.ecx.read_immediate(&this.ecx.eval_operand(left, None)?)
        });
        // Check for exceeding shifts *even if* we cannot evaluate the LHS.
        if op == BinOp::Shr || op == BinOp::Shl {
            let r = r.clone()?;
            // We need the type of the LHS. We cannot use `place_layout` as that is the type
            // of the result, which for checked binops is not the same!
            let left_ty = left.ty(self.local_decls, self.tcx);
            let left_size = self.ecx.layout_of(left_ty).ok()?.size;
            let right_size = r.layout.size;
            let r_bits = r.to_scalar().to_bits(right_size).ok();
            if r_bits.map_or(false, |b| b >= left_size.bits() as u128) {
                debug!("check_binary_op: reporting assert for {:?}", source_info);
                self.report_assert_as_lint(
                    lint::builtin::ARITHMETIC_OVERFLOW,
                    source_info,
                    "this arithmetic operation will overflow",
                    AssertKind::Overflow(
                        op,
                        match l {
                            Some(l) => l.to_const_int(),
                            // Invent a dummy value, the diagnostic ignores it anyway
                            None => ConstInt::new(
                                ScalarInt::try_from_uint(1_u8, left_size).unwrap(),
                                left_ty.is_signed(),
                                left_ty.is_ptr_sized_integral(),
                            ),
                        },
                        r.to_const_int(),
                    ),
                );
                return None;
            }
        }

        if let (Some(l), Some(r)) = (l, r) {
            // The remaining operators are handled through `overflowing_binary_op`.
            if self.use_ecx(source_info, |this| {
                let (_res, overflow, _ty) = this.ecx.overflowing_binary_op(op, &l, &r)?;
                Ok(overflow)
            })? {
                self.report_assert_as_lint(
                    lint::builtin::ARITHMETIC_OVERFLOW,
                    source_info,
                    "this arithmetic operation will overflow",
                    AssertKind::Overflow(op, l.to_const_int(), r.to_const_int()),
                );
                return None;
            }
        }
        Some(())
    }

    fn const_prop(
        &mut self,
        rvalue: &Rvalue<'tcx>,
        source_info: SourceInfo,
        place: Place<'tcx>,
    ) -> Option<()> {
        // Perform any special handling for specific Rvalue types.
        // Generally, checks here fall into one of two categories:
        //   1. Additional checking to provide useful lints to the user
        //        - In this case, we will do some validation and then fall through to the
        //          end of the function which evals the assignment.
        //   2. Working around bugs in other parts of the compiler
        //        - In this case, we'll return `None` from this function to stop evaluation.
        match rvalue {
            // Additional checking: give lints to the user if an overflow would occur.
            // We do this here and not in the `Assert` terminator as that terminator is
            // only sometimes emitted (overflow checks can be disabled), but we want to always
            // lint.
            Rvalue::UnaryOp(op, arg) => {
                trace!("checking UnaryOp(op = {:?}, arg = {:?})", op, arg);
                self.check_unary_op(*op, arg, source_info)?;
            }
            Rvalue::BinaryOp(op, box (left, right)) => {
                trace!("checking BinaryOp(op = {:?}, left = {:?}, right = {:?})", op, left, right);
                self.check_binary_op(*op, left, right, source_info)?;
            }
            Rvalue::CheckedBinaryOp(op, box (left, right)) => {
                trace!(
                    "checking CheckedBinaryOp(op = {:?}, left = {:?}, right = {:?})",
                    op,
                    left,
                    right
                );
                self.check_binary_op(*op, left, right, source_info)?;
            }

            // Do not try creating references (#67862)
            Rvalue::AddressOf(_, place) | Rvalue::Ref(_, _, place) => {
                trace!("skipping AddressOf | Ref for {:?}", place);

                // This may be creating mutable references or immutable references to cells.
                // If that happens, the pointed to value could be mutated via that reference.
                // Since we aren't tracking references, the const propagator loses track of what
                // value the local has right now.
                // Thus, all locals that have their reference taken
                // must not take part in propagation.
                Self::remove_const(&mut self.ecx, place.local);

                return None;
            }
            Rvalue::ThreadLocalRef(def_id) => {
                trace!("skipping ThreadLocalRef({:?})", def_id);

                return None;
            }

            // There's no other checking to do at this time.
            Rvalue::Aggregate(..)
            | Rvalue::Use(..)
            | Rvalue::CopyForDeref(..)
            | Rvalue::Repeat(..)
            | Rvalue::Len(..)
            | Rvalue::Cast(..)
            | Rvalue::ShallowInitBox(..)
            | Rvalue::Discriminant(..)
            | Rvalue::NullaryOp(..) => {}
        }

        // FIXME we need to revisit this for #67176
        if rvalue.needs_subst() {
            return None;
        }
        if !rvalue
            .ty(&self.ecx.frame().body.local_decls, *self.ecx.tcx)
            .is_sized(self.ecx.tcx, self.param_env)
        {
            // the interpreter doesn't support unsized locals (only unsized arguments),
            // but rustc does (in a kinda broken way), so we have to skip them here
            return None;
        }

        self.use_ecx(source_info, |this| this.ecx.eval_rvalue_into_place(rvalue, place))
    }
}

impl<'tcx> Visitor<'tcx> for ConstPropagator<'_, 'tcx> {
    fn visit_body(&mut self, body: &Body<'tcx>) {
        for (bb, data) in body.basic_blocks.iter_enumerated() {
            self.visit_basic_block_data(bb, data);
        }
    }

    fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
        self.super_operand(operand, location);
    }

    fn visit_constant(&mut self, constant: &Constant<'tcx>, location: Location) {
        trace!("visit_constant: {:?}", constant);
        self.super_constant(constant, location);
        self.eval_constant(constant, self.source_info.unwrap());
    }

    fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
        trace!("visit_statement: {:?}", statement);
        let source_info = statement.source_info;
        self.source_info = Some(source_info);
        if let StatementKind::Assign(box (place, ref rval)) = statement.kind {
            let can_const_prop = self.ecx.machine.can_const_prop[place.local];
            if let Some(()) = self.const_prop(rval, source_info, place) {
                match can_const_prop {
                    ConstPropMode::OnlyInsideOwnBlock => {
                        trace!(
                            "found local restricted to its block. \
                                Will remove it from const-prop after block is finished. Local: {:?}",
                            place.local
                        );
                    }
                    ConstPropMode::OnlyPropagateInto | ConstPropMode::NoPropagation => {
                        trace!("can't propagate into {:?}", place);
                        if place.local != RETURN_PLACE {
                            Self::remove_const(&mut self.ecx, place.local);
                        }
                    }
                    ConstPropMode::FullConstProp => {}
                }
            } else {
                // Const prop failed, so erase the destination, ensuring that whatever happens
                // from here on, does not know about the previous value.
                // This is important in case we have
                // ```rust
                // let mut x = 42;
                // x = SOME_MUTABLE_STATIC;
                // // x must now be uninit
                // ```
                // FIXME: we overzealously erase the entire local, because that's easier to
                // implement.
                trace!(
                    "propagation into {:?} failed.
                        Nuking the entire site from orbit, it's the only way to be sure",
                    place,
                );
                Self::remove_const(&mut self.ecx, place.local);
            }
        } else {
            match statement.kind {
                StatementKind::SetDiscriminant { ref place, .. } => {
                    match self.ecx.machine.can_const_prop[place.local] {
                        ConstPropMode::FullConstProp | ConstPropMode::OnlyInsideOwnBlock => {
                            if self
                                .use_ecx(source_info, |this| this.ecx.statement(statement))
                                .is_some()
                            {
                                trace!("propped discriminant into {:?}", place);
                            } else {
                                Self::remove_const(&mut self.ecx, place.local);
                            }
                        }
                        ConstPropMode::OnlyPropagateInto | ConstPropMode::NoPropagation => {
                            Self::remove_const(&mut self.ecx, place.local);
                        }
                    }
                }
                StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
                    let frame = self.ecx.frame_mut();
                    frame.locals[local].value =
                        if let StatementKind::StorageLive(_) = statement.kind {
                            LocalValue::Live(interpret::Operand::Immediate(
                                interpret::Immediate::Uninit,
                            ))
                        } else {
                            LocalValue::Dead
                        };
                }
                _ => {}
            }
        }

        self.super_statement(statement, location);
    }

    fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
        let source_info = terminator.source_info;
        self.source_info = Some(source_info);
        self.super_terminator(terminator, location);
        match &terminator.kind {
            TerminatorKind::Assert { expected, ref msg, ref cond, .. } => {
                if let Some(ref value) = self.eval_operand(&cond, source_info) {
                    trace!("assertion on {:?} should be {:?}", value, expected);
                    let expected = Scalar::from_bool(*expected);
                    let Ok(value_const) = self.ecx.read_scalar(&value) else {
                        // FIXME should be used use_ecx rather than a local match... but we have
                        // quite a few of these read_scalar/read_immediate that need fixing.
                        return
                    };
                    if expected != value_const {
                        enum DbgVal<T> {
                            Val(T),
                            Underscore,
                        }
                        impl<T: std::fmt::Debug> std::fmt::Debug for DbgVal<T> {
                            fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
                                match self {
                                    Self::Val(val) => val.fmt(fmt),
                                    Self::Underscore => fmt.write_str("_"),
                                }
                            }
                        }
                        let mut eval_to_int = |op| {
                            // This can be `None` if the lhs wasn't const propagated and we just
                            // triggered the assert on the value of the rhs.
                            self.eval_operand(op, source_info)
                                .and_then(|op| self.ecx.read_immediate(&op).ok())
                                .map_or(DbgVal::Underscore, |op| DbgVal::Val(op.to_const_int()))
                        };
                        let msg = match msg {
                            AssertKind::DivisionByZero(op) => {
                                Some(AssertKind::DivisionByZero(eval_to_int(op)))
                            }
                            AssertKind::RemainderByZero(op) => {
                                Some(AssertKind::RemainderByZero(eval_to_int(op)))
                            }
                            AssertKind::Overflow(bin_op @ (BinOp::Div | BinOp::Rem), op1, op2) => {
                                // Division overflow is *UB* in the MIR, and different than the
                                // other overflow checks.
                                Some(AssertKind::Overflow(
                                    *bin_op,
                                    eval_to_int(op1),
                                    eval_to_int(op2),
                                ))
                            }
                            AssertKind::BoundsCheck { ref len, ref index } => {
                                let len = eval_to_int(len);
                                let index = eval_to_int(index);
                                Some(AssertKind::BoundsCheck { len, index })
                            }
                            // Remaining overflow errors are already covered by checks on the binary operators.
                            AssertKind::Overflow(..) | AssertKind::OverflowNeg(_) => None,
                            // Need proper const propagator for these.
                            _ => None,
                        };
                        // Poison all places this operand references so that further code
                        // doesn't use the invalid value
                        match cond {
                            Operand::Move(ref place) | Operand::Copy(ref place) => {
                                Self::remove_const(&mut self.ecx, place.local);
                            }
                            Operand::Constant(_) => {}
                        }
                        if let Some(msg) = msg {
                            self.report_assert_as_lint(
                                lint::builtin::UNCONDITIONAL_PANIC,
                                source_info,
                                "this operation will panic at runtime",
                                msg,
                            );
                        }
                    }
                }
            }
            // None of these have Operands to const-propagate.
            TerminatorKind::Goto { .. }
            | TerminatorKind::Resume
            | TerminatorKind::Abort
            | TerminatorKind::Return
            | TerminatorKind::Unreachable
            | TerminatorKind::Drop { .. }
            | TerminatorKind::DropAndReplace { .. }
            | TerminatorKind::Yield { .. }
            | TerminatorKind::GeneratorDrop
            | TerminatorKind::FalseEdge { .. }
            | TerminatorKind::FalseUnwind { .. }
            | TerminatorKind::SwitchInt { .. }
            | TerminatorKind::Call { .. }
            | TerminatorKind::InlineAsm { .. } => {}
        }

        // We remove all Locals which are restricted in propagation to their containing blocks and
        // which were modified in the current block.
        // Take it out of the ecx so we can get a mutable reference to the ecx for `remove_const`.
        let mut locals = std::mem::take(&mut self.ecx.machine.written_only_inside_own_block_locals);
        for &local in locals.iter() {
            Self::remove_const(&mut self.ecx, local);
        }
        locals.clear();
        // Put it back so we reuse the heap of the storage
        self.ecx.machine.written_only_inside_own_block_locals = locals;
        if cfg!(debug_assertions) {
            // Ensure we are correctly erasing locals with the non-debug-assert logic.
            for local in self.ecx.machine.only_propagate_inside_block_locals.iter() {
                assert!(
                    self.get_const(local.into()).is_none()
                        || self
                            .layout_of(self.local_decls[local].ty)
                            .map_or(true, |layout| layout.is_zst())
                )
            }
        }
    }
}