1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::struct_span_err;
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::DefId;
use rustc_index::vec::IndexVec;
use rustc_middle::traits::specialization_graph::OverlapMode;
use rustc_middle::ty::{self, TyCtxt};
use rustc_span::Symbol;
use rustc_trait_selection::traits::{self, SkipLeakCheck};
use smallvec::SmallVec;
use std::collections::hash_map::Entry;

pub fn crate_inherent_impls_overlap_check(tcx: TyCtxt<'_>, (): ()) {
    let mut inherent_overlap_checker = InherentOverlapChecker { tcx };
    for id in tcx.hir().items() {
        inherent_overlap_checker.check_item(id);
    }
}

struct InherentOverlapChecker<'tcx> {
    tcx: TyCtxt<'tcx>,
}

impl<'tcx> InherentOverlapChecker<'tcx> {
    /// Checks whether any associated items in impls 1 and 2 share the same identifier and
    /// namespace.
    fn impls_have_common_items(
        &self,
        impl_items1: &ty::AssocItems<'_>,
        impl_items2: &ty::AssocItems<'_>,
    ) -> bool {
        let mut impl_items1 = &impl_items1;
        let mut impl_items2 = &impl_items2;

        // Performance optimization: iterate over the smaller list
        if impl_items1.len() > impl_items2.len() {
            std::mem::swap(&mut impl_items1, &mut impl_items2);
        }

        for item1 in impl_items1.in_definition_order() {
            let collision = impl_items2
                .filter_by_name_unhygienic(item1.name)
                .any(|item2| self.compare_hygienically(item1, item2));

            if collision {
                return true;
            }
        }

        false
    }

    fn compare_hygienically(&self, item1: &ty::AssocItem, item2: &ty::AssocItem) -> bool {
        // Symbols and namespace match, compare hygienically.
        item1.kind.namespace() == item2.kind.namespace()
            && item1.ident(self.tcx).normalize_to_macros_2_0()
                == item2.ident(self.tcx).normalize_to_macros_2_0()
    }

    fn check_for_common_items_in_impls(
        &self,
        impl1: DefId,
        impl2: DefId,
        overlap: traits::OverlapResult<'_>,
    ) {
        let impl_items1 = self.tcx.associated_items(impl1);
        let impl_items2 = self.tcx.associated_items(impl2);

        for item1 in impl_items1.in_definition_order() {
            let collision = impl_items2
                .filter_by_name_unhygienic(item1.name)
                .find(|item2| self.compare_hygienically(item1, item2));

            if let Some(item2) = collision {
                let name = item1.ident(self.tcx).normalize_to_macros_2_0();
                let mut err = struct_span_err!(
                    self.tcx.sess,
                    self.tcx.def_span(item1.def_id),
                    E0592,
                    "duplicate definitions with name `{}`",
                    name
                );
                err.span_label(
                    self.tcx.def_span(item1.def_id),
                    format!("duplicate definitions for `{}`", name),
                );
                err.span_label(
                    self.tcx.def_span(item2.def_id),
                    format!("other definition for `{}`", name),
                );

                for cause in &overlap.intercrate_ambiguity_causes {
                    cause.add_intercrate_ambiguity_hint(&mut err);
                }

                if overlap.involves_placeholder {
                    traits::add_placeholder_note(&mut err);
                }

                err.emit();
            }
        }
    }

    fn check_for_overlapping_inherent_impls(
        &self,
        overlap_mode: OverlapMode,
        impl1_def_id: DefId,
        impl2_def_id: DefId,
    ) {
        traits::overlapping_impls(
            self.tcx,
            impl1_def_id,
            impl2_def_id,
            // We go ahead and just skip the leak check for
            // inherent impls without warning.
            SkipLeakCheck::Yes,
            overlap_mode,
            |overlap| {
                self.check_for_common_items_in_impls(impl1_def_id, impl2_def_id, overlap);
                false
            },
            || true,
        );
    }

    fn check_item(&mut self, id: hir::ItemId) {
        let def_kind = self.tcx.def_kind(id.def_id);
        if !matches!(def_kind, DefKind::Enum | DefKind::Struct | DefKind::Trait | DefKind::Union) {
            return;
        }

        let impls = self.tcx.inherent_impls(id.def_id);

        // If there is only one inherent impl block,
        // there is nothing to overlap check it with
        if impls.len() <= 1 {
            return;
        }

        let overlap_mode = OverlapMode::get(self.tcx, id.def_id.to_def_id());

        let impls_items = impls
            .iter()
            .map(|impl_def_id| (impl_def_id, self.tcx.associated_items(*impl_def_id)))
            .collect::<SmallVec<[_; 8]>>();

        // Perform a O(n^2) algorithm for small n,
        // otherwise switch to an allocating algorithm with
        // faster asymptotic runtime.
        const ALLOCATING_ALGO_THRESHOLD: usize = 500;
        if impls.len() < ALLOCATING_ALGO_THRESHOLD {
            for (i, &(&impl1_def_id, impl_items1)) in impls_items.iter().enumerate() {
                for &(&impl2_def_id, impl_items2) in &impls_items[(i + 1)..] {
                    if self.impls_have_common_items(impl_items1, impl_items2) {
                        self.check_for_overlapping_inherent_impls(
                            overlap_mode,
                            impl1_def_id,
                            impl2_def_id,
                        );
                    }
                }
            }
        } else {
            // Build a set of connected regions of impl blocks.
            // Two impl blocks are regarded as connected if they share
            // an item with the same unhygienic identifier.
            // After we have assembled the connected regions,
            // run the O(n^2) algorithm on each connected region.
            // This is advantageous to running the algorithm over the
            // entire graph when there are many connected regions.

            rustc_index::newtype_index! {
                pub struct RegionId {
                    ENCODABLE = custom
                }
            }
            struct ConnectedRegion {
                idents: SmallVec<[Symbol; 8]>,
                impl_blocks: FxHashSet<usize>,
            }
            let mut connected_regions: IndexVec<RegionId, _> = Default::default();
            // Reverse map from the Symbol to the connected region id.
            let mut connected_region_ids = FxHashMap::default();

            for (i, &(&_impl_def_id, impl_items)) in impls_items.iter().enumerate() {
                if impl_items.len() == 0 {
                    continue;
                }
                // First obtain a list of existing connected region ids
                let mut idents_to_add = SmallVec::<[Symbol; 8]>::new();
                let mut ids = impl_items
                    .in_definition_order()
                    .filter_map(|item| {
                        let entry = connected_region_ids.entry(item.name);
                        if let Entry::Occupied(e) = &entry {
                            Some(*e.get())
                        } else {
                            idents_to_add.push(item.name);
                            None
                        }
                    })
                    .collect::<SmallVec<[RegionId; 8]>>();
                // Sort the id list so that the algorithm is deterministic
                ids.sort_unstable();
                ids.dedup();
                let ids = ids;
                match &ids[..] {
                    // Create a new connected region
                    [] => {
                        let id_to_set = connected_regions.next_index();
                        // Update the connected region ids
                        for ident in &idents_to_add {
                            connected_region_ids.insert(*ident, id_to_set);
                        }
                        connected_regions.insert(
                            id_to_set,
                            ConnectedRegion {
                                idents: idents_to_add,
                                impl_blocks: std::iter::once(i).collect(),
                            },
                        );
                    }
                    // Take the only id inside the list
                    &[id_to_set] => {
                        let region = connected_regions[id_to_set].as_mut().unwrap();
                        region.impl_blocks.insert(i);
                        region.idents.extend_from_slice(&idents_to_add);
                        // Update the connected region ids
                        for ident in &idents_to_add {
                            connected_region_ids.insert(*ident, id_to_set);
                        }
                    }
                    // We have multiple connected regions to merge.
                    // In the worst case this might add impl blocks
                    // one by one and can thus be O(n^2) in the size
                    // of the resulting final connected region, but
                    // this is no issue as the final step to check
                    // for overlaps runs in O(n^2) as well.
                    &[id_to_set, ..] => {
                        let mut region = connected_regions.remove(id_to_set).unwrap();
                        region.impl_blocks.insert(i);
                        region.idents.extend_from_slice(&idents_to_add);
                        // Update the connected region ids
                        for ident in &idents_to_add {
                            connected_region_ids.insert(*ident, id_to_set);
                        }

                        // Remove other regions from ids.
                        for &id in ids.iter() {
                            if id == id_to_set {
                                continue;
                            }
                            let r = connected_regions.remove(id).unwrap();
                            for ident in r.idents.iter() {
                                connected_region_ids.insert(*ident, id_to_set);
                            }
                            region.idents.extend_from_slice(&r.idents);
                            region.impl_blocks.extend(r.impl_blocks);
                        }

                        connected_regions.insert(id_to_set, region);
                    }
                }
            }

            debug!(
                "churning through {} components (sum={}, avg={}, var={}, max={})",
                connected_regions.len(),
                impls.len(),
                impls.len() / connected_regions.len(),
                {
                    let avg = impls.len() / connected_regions.len();
                    let s = connected_regions
                        .iter()
                        .flatten()
                        .map(|r| r.impl_blocks.len() as isize - avg as isize)
                        .map(|v| v.abs() as usize)
                        .sum::<usize>();
                    s / connected_regions.len()
                },
                connected_regions.iter().flatten().map(|r| r.impl_blocks.len()).max().unwrap()
            );
            // List of connected regions is built. Now, run the overlap check
            // for each pair of impl blocks in the same connected region.
            for region in connected_regions.into_iter().flatten() {
                let mut impl_blocks =
                    region.impl_blocks.into_iter().collect::<SmallVec<[usize; 8]>>();
                impl_blocks.sort_unstable();
                for (i, &impl1_items_idx) in impl_blocks.iter().enumerate() {
                    let &(&impl1_def_id, impl_items1) = &impls_items[impl1_items_idx];
                    for &impl2_items_idx in impl_blocks[(i + 1)..].iter() {
                        let &(&impl2_def_id, impl_items2) = &impls_items[impl2_items_idx];
                        if self.impls_have_common_items(impl_items1, impl_items2) {
                            self.check_for_overlapping_inherent_impls(
                                overlap_mode,
                                impl1_def_id,
                                impl2_def_id,
                            );
                        }
                    }
                }
            }
        }
    }
}